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Overview

This document contains the Standard Interface Data Structures (SIDS) definitions for the CFD
General Notation System (CGNS) project; this project was originally a NASA-funded contract
under the AST program, but control has now been completely transferred to a public forum known
as the CGNS Steering Committee.

This version of the “Standard Interface Data Structures” represents a draft revision of the AIAA
Recommended Practice R-101-2002. This document has not undergone a formal approval vote by
the standards committee and is therefore not an approved AIAA consensus document. At the time
of release of the next major version of the corresponding CGNS software, this draft document will
be voted on by the committee members and, pending approval, become the next iteration of the
ATAA Recommended Practice. To obtain bound paper copies of the current approved version of
this document (corresponding to Software Release 2.0 beta 2), please visit the ATAA Online Store.
The current Recommended Practice is also available as a PDF file (925K, 171 pages).

The purpose of this document is to scope the information that should be communicated between
various CFD application codes; the target is 3—D multizone, compressible Navier-Stokes analysis.
Attention in this document is not focussed on I/O routines or formats, but on the precise description
of data that should be present in the I/O of a CFD code or in a CFD database.

This document therefore contains a precise definition of information pertinent to a CGNS database.
Specifically, the following information is addressed:

e grid coordinates and elements

e flow solution data, including nondimensional parameters

e multizone interface connectivity, including abutting and overset
e boundary conditions

e flow equation descriptions

e time-dependent flow

e reference states

e dimensional units and nondimensionalization information associated with data
e convergence history

e association to geometry definition

e topologically based hierarchical structures

This information is encoded into C-like data structures.

Questions and comments on this document are welcome and should be directed to one of the
following:


http://www.aiaa.org/store/storeproductdetail.cfm?ID=1063
http://www.grc.nasa.gov/www/cgns/sids/aiaa/R_101_2002.pdf
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Charlie Towne

MS 86-7

NASA Glenn Research Center
Cleveland, OH 44135-3191
(216) 433-5851

(216) 977-7500 (FAX)

e-mail: towne@grc.nasa.gov

Diane Poirier

ICEM CFD Engineering
2855 Telegraph Ave Suite 501
Berkeley, CA 94705

(510) 549-1890

(510) 841-8523 (FAX)
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1 Introduction

The CGNS (CFD General Notation System) project originated during 1994 through a series of meet-
ings that addressed improved transfer of NASA technology to industry. A principal impediment
in this process was the disparity in I/O formats employed by various flow codes, grid generators,
and other utilities, and CGNS was conceived as a means to promote “plug-and-play” CFD. Agree-
ment was reached to develop CGNS at Boeing, under NASA Contract NAS1-20267, with active
participation by a team of CFD researchers from NASA’s Langley, Lewis (now Glenn), and Ames
Research Centers, McDonnell Douglas Corporation (now part of Boeing), and Boeing Commercial
Airplane Group. This team, which was joined by ICEM CFD Engineering Corporation of Berkeley,
California in 1997, undertook the core of the development. However, in the spirit of creating a
completely open and broadly accepted standard, all interested parties were encouraged to partici-
pate; the US Air Force and Arnold Engineering Development Center were notably present. From
the beginning, the purpose was to develop a system that could be distributed freely, including all
documentation, software and source code. This goal has now been fully realized; further, control of
CGNS has been completely transferred to a public forum known as the CGNS Steering Committee.

The specific purpose of CGNS was to provide a standard for recording and recovering computer
data associated with the numerical solution of the equations of fluid dynamics. The intent was to
facilitate the exchange of CFD data between sites, between applications codes, and across computing
platforms, and to stabilize the archiving of CFD data. The format implemented by this standard
was to be (1) general, (2) portable, (3) expandable, and (4) durable.

The resulting system today consists of a collection of conventions, and software implementing those
conventions, for the storage and retrieval of CFD data. The system consists of two parts: (1) a
standard format for recording the data, and (2) software that reads, writes, and modifies data in
that format. The format is a conceptual entity established by the documentation; the software is a
physical product supplied to enable developers to access and produce data recorded in that format.

The principal target is the data normally associated with compressible viscous flow (i.e., the Navier-
Stokes equations), but the standard is also applicable to subclasses such as Euler and potential flows.
The initial release addressed multi-zone grids, flow fields, boundary conditions, and zone-to-zone
connection information, as well as a number of auxiliary items, such as non-dimensionalization,
reference states, and equation set specifications. Extensions incorporated since then include un-
structured mesh, connections to geometry definition, time-dependent flow, and support for multiple
species and chemistry.

It is worth noting that extensibility is a fundamental design characteristic of the system, which
in principal could be used for other disciplines of computational field physics, such as acoustics or
electromagnetics, given the willingness of the cognizant scientific community to define the conven-
tions.

The standard format, or paper convention, part of CGNS consists of two fundamental pieces. The
first, known as the Standard Interface Data Structures (SIDS), describes in detail the intellectual
content of the information to be stored. It defines, for example, the precise meaning of a “boundary
condition”. The second, known as the File Mapping, defines the exact location in a CGNS file
where the data is to be stored.

The implementation, or software, part of CGNS likewise consists of two separate entities. CGNS
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files are read and written by a stand-alone database manager called ADF (Advanced Data Format).
ADF manages a tree-like data structure, implemented as a binary file. Since the format of this
file is completely controlled by ADF, and since ADF is written in ANSI C (FORTRAN wrappers
are provided), these files and ADF itself are portable to any environment which supports ANSI
C. ADF is available separately and constitutes a useful tool for the storage of large quantities of
scientific data.

ADF, however, implements no knowledge of CFD or of the File Mapping. To simplify access to
CGNS files, a second layer of software known as the Mid-Level Library is provided. This layer is
in effect an API, or Application Programming Interface for CFD. The API incorporates knowledge
of the CFD data structures, their meaning and their location in the file, enabling applications such
as flow codes and grid generators to access the data in familiar terms. The API is therefore the
piece of the CGNS system most visible to applications developers. Like ADF, the API is written
in ANSI C; all public API routines have FORTRAN counterparts.

This document presents the formal definition of the Standard Interface Data Structures (SIDS).
Section 2 presents the major design philosophies used to develop the CGNS database and the
encoding of this database into the SIDS; this section also provides an overview of the database
hierarchy. Section 3 describes the C-like nomenclature conventions used to define the SIDS. This
section also gives the conventions for structured grid indexing and unstructured element numbering,
and the nomenclature for multizone interfaces. Low-level building-block structures are defined in
Section 4; these structures are used to define all higher-level structures. Structures for defining data
arrays, including dimensional-units and nondimensional information, are presented in Section 5.
The top levels of the CGNS hierarchy are next defined in Section 6. The following sections then
fill out the remainder of the hierarchy: Section 7 defines the grid-coordinate, elements, and flow-
solution structures; Section 8 defines the multizone interface connectivity structures; Section 9
defines boundary-condition structures; Section 10 defines structures for describing governing flow
equations; Section 11 defines structures related to time-dependent flows; and Section 12 contains
miscellaneous structures. Two appendices complete the document. Appendix A provides naming
conventions for data contained within the CGNS database, and Appendix B contains a complete
SIDS description of a structured-grid two-zone test case.

1.1 Major Differences from Previous SIDS Documents
The following items represent noteworthy alterations and additions to the SIDS starting with the
August 1999 draft document. (Note that some of these changes — notably those for unstructured

zones, family, and geometry reference — have existed previously in separate documents, but are
now being merged officially into the SIDS; the data structures themselves are not “new.”)

1.1.1 Release 2.0, Beta 1

The following changes were made for Release 2.0, Beta 1, of the CGNS software.

e The capability for recording unstructured zones has been added to the SIDS. (These changes
occur throughout the document, although some specific items are listed below.)
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e The values UserDefined and Null are now allowed for all enumeration types (throughout
document).

e The following nodes are now defined (some of these also include additional new children sub-
nodes): Family_t (Section 12.6), Elements_t (Section 7.3), ZoneType_t (Section 6.2), Fam—-
ilyName_t (Section 6.2), GeometryReference_t (Section 12.7), FamilyBC_t (Section 12.8).

e Under CGNSBase_t, the IndexDimension is no longer recorded; it has been replaced by
CellDimension and PhysicalDimension (Section 6.1).

e Under Zone_t, the optional parameter VertexSizeBoundary has been added for unstructured
zones (Section 6.2).

e The method for general connectivity (GridConnectivity_t) has been altered. It now requires
the use of either (a) PointListDonor (an integer, for Abuttingltol only) or (b) CellList-
Donor (an integer) plus InterpolantsDonor (a real) (Section 8.4).

e The GridLocation_t parameter has been moved up one level (from BCDataSet_t to BC_t).
Thus, for example, if the boundary conditions are defined at vertices (the default), then any
associated dataset information must also be specified at vertices (Section 9.3 and Section 9.4).

e The data-name identifier LengthReference has been added (Section 12.1 and Appendix A.2).

e The 14 parameter has been renamed ViscosityEddyKinematic, and a new parameter Vis-
cosityEddy, representing p, has been defined (Appendix A.2).

1.1.2 Release 2.0, Beta 2

The following changes were made for Release 2.0, Beta 2, of the CGNS software.

e The following data structures related to time-dependent flow have been added: Baselter-
ativeData_t (Section 11.1.1), ZoneIterativeData_t (Section 11.1.2), RigidGridMotion_t
(Section 11.2), ArbitraryGridMotion_t (Section 11.3).

1.1.3 Release 2.1, Beta 1

The following changes were made for Release 2.1, Beta 1, of the CGNS software.

e A node type UserDefinedData_t (Section 12.9) is added for the storage of arbitrary user
defined data in Descriptor_t and DataArray_t children without the restrictions or implicit
meanings imposed on these node types at other node locations.

e Support for multi-species flows and chemistry has been added. New gas models have been
added to the GasModelType_t enumeration (Section 10.3), and ThermalRelaxationModel_t
and ChemicalKineticsModel_t data structures have been added for describing the thermal
relaxation and chemical kinetics models (Section 10.7 and Section 10.8). Additional flow
solution data-name identifiers are included (Appendix A.2).
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The major design goal of the SIDS is a comprehensive and unambiguous description of the ‘intel-
lectual content’ of information that must be passed from code to code in a multizone Navier-Stokes
analysis system. This information includes grids, flow solutions, multizone interface connectivity,
boundary conditions, reference states and dimensional units or normalization associated with data.

Implications of CFD Data Sets

The goal is description of the data sets typical of CFD analysis, which tend to contain a small
number of extremely large data arrays. This has a number of implications for both the design of
the SIDS and the ultimate physical files where the data resides. The first is that any I/O system
built for CFD analysis must be designed to efficiently store and process large data arrays. This is
reflected in the SIDS, which includes provisions for describing large data arrays.

The second implication is that the nature of the data sets allows for thorough description of the
data with relatively little storage overhead and performance penalty. For example, the flow solution
of a CFD analysis may contain several millions of quantities. Therefore, with little penalty it is
possible to include information describing the flow variables stored, their location in the grid, and
dimensional units or nondimensionalization associated with the data. The SIDS take advantage of
this situation and includes an extensive description of the information stored in the database.

The third implication of CFD data sets is that files containing a CFD database are almost always
required to be binary — ASCII storage of CFD data involves excessive storage and performance
penalties. This means the files are not readable by humans and the information contained in them
is not directly modifiable by text editors and such. This is reflected in the syntax of the SIDS,
which tends to be verbose and thorough; whereas, directly modifiable ASCII file formats would
tend to foster a more brief syntax.

It is important to note that the description of information by the SIDS is independent of physical
file formats. However, it is targeted towards implementation using the ADF Core library. Some of
the language components used to define the SIDS are meant to directly map into elements of an
ADF node.

Topologically Based Hierarchical Database

An early decision in the CGNS project was that any new CFD I/O standard should include a
hierarchical database, such as a tree or directed graph. The SIDS describe a hierarchical database,
precisely defining both the data and their hierarchical relationships.

There are two major alternatives to organizing a CFD hierarchy: topologically based and data-type
based. In a topologically based graph, overall organization is by zones; information pertaining to a
particular zone, including its grid coordinates or flow solution, hangs off the zone. In a data-type
based graph, organization is by related data. For example, there would be two nodes at the same
level, one for grid coordinates and another for the flow solution. Hanging off each of these nodes
would be separate lists of the zones.
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CGNS database

Reference state Zone 1 Zone 2 s Zone N
/T\ /T\
Grid coordinates Multizone interface Flow solution Boundary conditions
connectivity /T\

ZON

x Yy z P PU pv pw Peo

Figure 1: Sample Topologically Based CFD Hierarchy

The hierarchy described in this document is topologically based; a simplified illustration of the
database hierarchy is shown in Figure 1. Hanging off the root ‘node’ of the database is a node
containing global reference-state information, such as freestream conditions, and a list of nodes for
each zone. The figure shows the nodes that hang off the first zone; similar nodes would hang off
of each zone in the database. Nodes containing the physical-coordinate data arrays (z, y and z)
for the first zone are shown hanging off the ‘grid coordinates’ node. Likewise, nodes containing the
first zone’s flow-solution data arrays hang off the ‘low solution’ node. The figure also depicts nodes
containing multizone interface connectivity and boundary condition information for the first zone;
subnodes hanging off each of these are not pictured.

Additional Design Objectives

The data structures comprising the SIDS are the result of several additional design objectives:

One objective is to minimize duplication of data within the hierarchy. Many parameters, such as the
grid size of a zone, are defined in only one location. This avoids implementation problems arising
from data duplication within the physical file containing the database; these problems include
simultaneous update of all copies and error checking when two copies of a data quantity are found
to be different. One consequence of minimizing data duplication is that information at lower levels
of the hierarchy may not be completely decipherable without access to information at higher levels.
For example, the grid size is defined in the zone structure (see Section 6.2), but this parameter is
needed in several substructures to define the size of grid and flow-solution data arrays. Therefore,
these substructures are not autonomous and deciphering information within them requires access to
information contained in the zone structure itself. The SIDS must reflect this cascade of information
within the database.

Another objective is elimination of nonsensical descriptions of the data. The SIDS have been



2 Design Philosophy of Standard Interface Data Structures

carefully developed to avoid data qualifiers and other optional descriptive information that could be
inconsistent. This has led to the use of specialized structures for certain CFD-related information.
One example is a single-purpose structure for defining physical grid coordinates of a zone. It is
possible to define the grid coordinates, flow solution and any other field quantities within a zone by a
generic discrete-data structure. However, this requires the generic structure to include information
defining the grid location of the data (e.g. the data is located at vertices or cell centers). Using the
generic structure to describe the grid coordinates leads to a possible inconsistency. By definition the
physical coordinates that define the grid are located at vertices, and including an optional qualifier
that states otherwise makes no sense.

A final objective is to allow documentation inclusion throughout the database. The SIDS contain
a uniform documentation mechanism for all major structures in the hierarchy. However, this
document establishes no conventions for using the documentation mechanism.






3 Conventions

3.1 Data Structure Notation Conventions

The intellectual content of the CGNS database is defined in terms of C-like notation including
typedefs and structures. The database is made up of entities, and each entity has a type associated
with it. Entities include such things as the dimensionality of the grid, an array of grid coordinates,
or a zone which contains all the data associated with a given region. Entities are defined in terms
of types, where a type can be an integer or a collection of elements (a structure) or a hierarchy of
structures or other similar constructs.

The terminology ‘instance of an entity’ is used to refer to an entity that has been assigned a value
or whose elements have been assigned values. The terminology ‘specific instance of a structure’ is
also used in the following sections. It is short for an instance of an entity whose type is a structure.

Names of entities and types are constructed using conventions typical of Mathematica'. Names or
identifiers contain no spaces and capitalization is used to distinguish individual words making up
a name; names are case-sensitive. The characters ‘.’ and ‘/’ should be avoided in names as these
have special meaning when referencing elements of a structure entity.

The following notational conventions are employed:

! comment to end of line

t suffix used for naming a type

; end of a definition, declaration, assignment or entity instance
= assignment (takes on the value of)

i= indicates a type definition (typedef)

[] delimiters of an array

{37 delimiters of a structure definition

{ }r delimiters of an instance of a structure entity

<> delimiters of a structure parameter list

int integer

real floating-point number

char character

bit bit

Enumeration( ) indicates an enumeration type

Data( ) indicates an array of data, which may be multidimensional
List( ) indicates a list of entities

Identifier( ) indicates an entity identifier

LogicalLink( ) indicates a logical link

/ delimiter for element of a structure entity

./ delimiter for parent of a structure entity

(r) designation for a required structure element

(o) designation for an optional structure element

(o/d) designation for an optional structure element with default if absent

! Mathematica 3.0, Wolfram Research, Inc., Champaign, IL (1996)

11
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An enumeration type is a set of values identified by names; names of values within a given enumer-
ation declaration must be unique. An example of an enumeration type is the following:

Enumeration( Dog, Cat, Bird, Frog )

This defines an enumeration type which contains four values.

Data() identifies an array of given dimensionality and size in each dimension, whose elements are
all of a given data type. It is written as,

Data( DataType, Dimension, DimensionValues[] ) ;

Dimension is an integer, and DimensionValues[] is an array of integers of size Dimension. Dimen-—
sion and DimensionValues [] specify the dimensionality of the array and its size in each dimension.
DataType specifies the data type of the array’s elements; it may consist of one of the following:
int, real, char or bit. For multidimensional arrays, FORTRAN indexing conventions are used.
Data() is formulated to map directly onto the data section of an ADF node.

A typedef establishes a new type and defines it in terms of previously defined types. Types are
identified by the suffix ‘_t’, and the symbol ‘:=" is used to establish a type definition (or typedef).
For example, the above enumeration example can be used in a typedef:

Pet_t := Enumeration( Dog, Cat, Bird, Frog ) ;
This defines a new type Pet_t, which can then be used to declare a new entity, such as,
Pet_t MyFavoritePet ;

By the above typedef and declaration, MyFavoritePet is an entity of type Pet_t and can have the
values Dog, Cat, Bird or Frog. A specific instance of MyFavoritePet is setting it equal to one of
these values (e.g. MyFavoritePet = Bird).

A structure is a type that can contain any number of elements, including elements that are also
structures. An example of a structure type definition is:

Sample_t :=
{
int Dimension ; (r)
real[4] Vector ; (o)
Pet_t ObnoxiousPet ; (o)
}

where Sample_t is the type of the structure. This structure contains three elements, Dimension,
Vector and ObnoxiousPet, whose types are int, real[4] and Pet_t, respectively. The type int
specifies an integer, and real [4] specifies an array of reals that is one-dimensional with a length
of four. The ‘(r)’ and ‘(o)’ notation in the right margin is explained below. Given the definition
of Sample_t, entities of this type can then be declared (e.g. Sample_t Samplel;). An example of
an instance of a structure entity is given by,

12



3 Conventions

Sample_t Samplel =
a8
Dimension = 3 ;
Vector = [1.0, 3.45, 2.1, 5.4] ;
ObnoxiousPet = Dog ;

3

Note the different functions played by single braces ‘{’ and double braces ‘{{’. The first is used
to delimit the definition of a structure type; the second is used to delimit a specific instance of a
structure entity.

Some structure type definitions contain arbitrarily long lists of other structures or types. These
lists will be identified by the notation,

List( Sample_t Samplel ... SampleN ) ;

where Samplel ... SampleN is the list of structure names or identifiers, each of which has the type
Sample_t. Within each list, the individual structure names are user-defined.

In the CGNS database it is sometimes necessary to reference the name or identifier of a structure
entity. References to entities are denoted by Identifier (), whose single argument is a structure
type. For example,

Identifier(Sample_t) SampleName ;

declares an entity, SampleName, whose value is the identifier of a structure entity of type Sample_t.
Given this declaration, SampleName could be assigned the value Samplel (i.e. SampleName =
Samplel).

It is sometimes convenient to directly identify an element of a specific structure entity. It is also
convenient to indicate that two entities with different names are actually the same entity. We
borrow UNIX conventions to indicate both these features, and make the analogy that a structure
entity is a UNIX directory and its elements are UNIX files. An element of an entity is designated
by ‘/’; an example is Samplel/Vector). The structure entity that a given element belongs to is
designated ‘../’ A UNIX-like logical link that specifies the sameness of two apparently different
entities is identified by LogicalLink(); it has one argument. An example of a logical link is as
follows: Suppose a specific instance of a structure entity contains two elements that are of type
Sample_t; call them SampleA and SampleB. The statement that SampleB is actually the same entity
as SampleA is,

SampleB = LogicalLink(../Samplel) ;
The argument of LogicalLink () is the UNIX-like ‘path name’ of the entity with which the link is
made. In this document, LogicalLink () and the direct specification of a structure element via ‘/’

and ‘. ./’ are actually seldom used. These language elements are never used in the actual definition
of a structure type.
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Structure type definitions include three additional syntactic/semantic notions. These are parame-
terized structures, structure-related functions, and the identification of required and optional fields
within a structure.

As previously stated, one of our design objectives is to minimize duplication of information within
the CGNS database. To meet this objective, information is often stored in only one location of the
hierarchy; however, that information is typically used in other parts of the hierarchy. A consequence
of this is that it may not be possible to decipher all the information associated with a given entity
in the hierarchy without knowledge of data contained in higher level entities. For example, the
grid size of a zone is stored in one location (in Zone_t, see Section 6.2), but is needed in many
substructures to define the size of grid and solution-data arrays.

This organization of information must be reflected in the language used to describe the database.
First, parameterized structures are introduced to formalize the notion that information must be
passed down the hierarchy. A given structure type is defined in terms of a list of parameters that
precisely specify what information must be obtained from the structure’s parent. These structure-
defining parameters play a similar role to subroutine parameters in C or FORTRAN and are used to
define fields within the structure; they are also passed onto substructures. Parameterized structures
are also loosely tied to templates in C++.

Parameterized structures are identified by the delimiters < > enclosing the list of parameters. Each
structure parameter in a structure-type definition consists of a type and an identifier. Examples of
parameterized structure type definitions are:

NewSample_t< int Dimension, int Fred > :=

{

int [Dimension] Vector ; (o)
Pet_t ObnoxiousPet ; (o)
Stuff_t<Fred> Thingy ; (o)
}s

Stuff_t< int George > :=

{

real [George] IrrelevantStuff ; (r)
s

NewSample_t and Stuff_t are parameterized structure types. Dimension and Fred are the struc-
ture parameters of NewSample_t. George is the structure parameter of Stuff_t. All structure
parameters in this example are of type int. Thingy is a structure entity of type Stuff_t; it uses
the parameter Fred to complete its declaration. Note the use of George and Fred in the above ex-
ample. George is a parameter in the definition of Stuff_t; Fred is an argument in the declaration
of an entity of type Stuff_t. This mimics the use of parameters in function definitions in C.

A second language feature required to cope with the cascade of information within the hierarchy
is structure-related functions. For example, the size of an array within a given structure may be a
function of one or more of the structure-defining parameters, or the array size may be a function of
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an optional field within the structure. No new syntax is provided to incorporate structure-related
functions; they are instead described in terms of their return values, dependencies, and functionality.

An additional notation used in structure typedefs is that each element or field within a structure
definition is identified as required, optional, or optional with a default if absent; these are designated
by ‘(r)’, ‘(0)’, and ‘(o/d)’, respectively, in the right margin of the structure definition. These
designations are included to assist in implementation of the data structures into an actual database
and can be used to guide mapping of data as well as error checking. ‘Required’ fields are those
essential to the interpretation of the information contained within the data structure. ‘Optional’
fields are those that are not necessary but potentially useful, such as documentation. ‘Defaulted-
optional’ fields are those that take on a known default if absent from the database.

In the example of Sample_t above, only the element Dimension is required. Both elements Vector
and ObnoxiousPet are optional. This means that in any specific instance of the structure, only
Dimension must be present. An alternative instance of the entity Samplel shown above is the
following:

Sample_t Samplel =
H{
Dimension = 4 ;

3

None of the entities and types defined in the above examples are actually used in the definition of
the SIDS.

As a final note, the reader should be aware that the SIDS is a conceptual description of the form
of the data. The actual locations of data in the file is determined in the ADF mapping. (See the
CGNS SIDS-to-ADF File Mapping Manual.)

3.2 Structured Grid Notation and Indexing Conventions

A grid is defined by its vertices. In a 3-D structured grid, the volume is the ensemble of cells,
where each cell is the hexahedron region defined by eight nearest neighbor vertices. Each cell is
bounded by six faces, where each face is the quadrilateral made up of four vertices. An edge links
two nearest-neighbor vertices; a face is bounded by four edges.

In a 2-D structured grid, the notation is more ambiguous. Typically, the quadrilateral area com-
posed of four nearest-neighbor vertices is referred to as a cell. The sides of each cell, the line linking
two vertices, is either a face or an edge. In a 1-D grid, the line connecting two vertices is a cell.

A structured multizone grid is composed of multiple regions called zones, where each zone includes
all the vertices, cells, faces, and edges that constitute the grid in that region.

Indices describing a 3-D grid are ordered (4, j,k); (4,7) is used for 2-D and (i) for 1-D.

Cell centers, face centers, and edge centers are indexed by the minimum of the connecting vertices.
For example, a 2-D cell center (or face center on a 3-D grid) would have the following convention:
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(4,7 +1) (i+1,7+1) (i+2,j+1)

(i,4) (i+1,5)

%) (i+1,7) (i+2,7)
In addition, the default beginning vertex for the grid in a given zone is (1,1, 1); this means the
default beginning cell center of the grid in that zone is also (1,1, 1).

A zone may contain grid-coordinate or flow-solution data defined at a set of points outside the zone
itself. These are referred to as ‘rind’ or ghost points and may be associated with fictitious vertices
or cell centers. They are distinguished from the vertices and cells making up the grid within the
zone (including its boundary vertices), which are referred to as ‘core’ points. The following is a
2-D zone with a single row of ‘rind’ vertices at the minimum and maximum i-faces. The grid size
(i.e. the number of ‘core’ vertices in each direction) is 5x4. ‘Core’ vertices are designated by ‘e’
and ‘rind’ vertices by ‘x’. Default indexing is also shown for the vertices.

(5,4)
e S e X
¥y v vt X
¥y v vt X

0,1 (1,1) 5, 1) (6,1)

For a zone, the minimum faces in each coordinate direction are denoted i-min, j-min and k-min;
the maximum faces are denoted i-max, j-max and k-max. These are the minimum and maximum
‘core’ faces. For example, i-min is the face or grid plane whose core vertices have minimum ¢ index
(which if using default indexing is 1).

3.3 Unstructured Grid Element Numbering Conventions

The major difference in the way structured and unstructured grids are recorded is the element defi-
nition. In a structured grid, the elements can always be recomputed easily using the computational
coordinates, and therefore they are usually not written in the data file. For an unstructured grid,
the element connectivity cannot be easily built, so this additional information is generally added
to the data file. The element information typically includes the element type or shape, and the list
of nodes for each element.

In an unstructured zone, the nodes are ordered from 1 to N, where N is the number of nodes in
the zone. An element is defined as a group of one or more nodes, where each node is represented
by its index. The elements are indexed from 1 to M within a zone, where M is the total number
of elements defined for the zone.

CGNS supports eight element shapes — points, lines, triangles, quadrangles, tetrahedra, penta-
hedra, pyramids, and hexahedra. Elements describing a volume are referred to as 3-D elements.
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Those defining a surface are 2-D elements. Line and point elements are called 1-D and 0-D elements,
respectively.

In a 3-D unstructured mesh, the cells are defined using 3-D elements, while the boundary patches
may be described using 2-D elements. The complete element definition may include more than just
the cells.

Each element shape may have a different number of nodes, depending on whether linear or quadratic
interpolation is used. Therefore the name of each type of element is composed of two parts; the first
part identifies the element shape, and the second part the number of nodes. Table 1 summarizes
the element types supported in CGNS.

Table 1: Element Types in CGNS

Dimensionality Shape Linear Quadratic
of the Element Interpolation Interpolation
0-D Point NODE NODE
1-D Line BAR_2 BAR_3
2-D Triangle TRI_3 TRI_6
Quadrangle QUAD_4 QUAD_8, QUAD_9
3-D Tetrahedron TETRA_4 TETRA_10
Pyramid PYRA_S PYRA_14
Pentahedron PENTA_6 PENTA_15, PENTA_18
Hexahedron HEXA_S HEXA_20, HEXA_27

Any element type not supported by CGNS can be recorded using the CGNS generic element type
NGON_n. See Section 7.3 for more detail.

The ordering of the nodes within an element is important. Since the nodes in each element type
could be ordered in multiple ways, it is necessary to define numbering conventions. The following
sections describe the element numbering conventions used in CGNS.

3.3.1 1-D (Line) Elements

1-D elements represent geometrically a line (or bar). The linear form, BAR_2, is composed of two
nodes at each extremity of the line. The quadratic form, BAR_3, has an additional node located at
the middle of the line.

BAR_2 BAR_3

le@® o2 le® @ o2

Face Definition

Oriented edge Corner nodes Mid-node
El N1,N2 N3
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3.3.2 2-D (Surface) Elements

2-D elements represent a surface in either 2-D or 3-D space. Note that in physical space, the surface
need not be planar, but may be curved. In a 2-D mesh the elements represent the cells themselves;
in a 3-D mesh they represent faces. CGNS supports two shapes of 2-D elements — triangles and
quadrangles.

The normal vector of a 2-D element is computed using the cross product of a vector from the first
to second node, with a vector from the first to third node. The direction of the normal is such that

the three vectors (i.e., (m — m), (m — m), and ﬁ) form a right-handed triad.
N = (N2 — N1) x (N3 — N1)

In a 2-D mesh, all elements must be oriented the same way; i.e., all normals must point toward the
same side of the mesh.

3.3.2.1 Triangular Elements

Two types of triangular elements are supported in CGNS, TRI_3 and TRI_6. TRI_3 elements are

composed of three nodes located at the three geometric corners of the triangle. TRI_6 elements
have three additional nodes located at the middles of the three edges.

TRI_3 T N TRI_6

3 ‘ 2 3

1
Edge Definition Face Definition
Oriented Corner Mid- Face Corner nodes Mid-edge nodes Oriented edges
edges nodes  node F1  N1,N2,N3 N4,N5,N6 E1,E2,E3
E1l Ni,N2 N4
E2 N2,N3 N5
E3 N3,N1 N6
Notes
N1,...,N6 Grid point identification number. Integer > 0 or blank, and N1 # N2 # ...#
N6. Grid points N1, N2, and N3 are in consecutive order about the triangle.
E1,E2,E3 Edge identification number.
F1 Face identification number.
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3.3.2.2 Quadrilateral Elements

CGNS supports three types of quadrilateral elements, QUAD_4, QUAD_8, and QUAD_9. QUAD_4 el-
ements are composed of four nodes located at the four geometric corners of the quadrangle. In
addition, QUAD_8 and QUAD_9 elements have four mid-edge nodes, and QUAD_9 adds a mid-face
node.

QUAD_4 T N QUAD_8
|

Edge Definition

Oriented Corner Mid-
edges nodes node

El Ni,N2 N5
E2 N2,N3 N6
E3 N3,N4 N7
E4 N4,N1 N8

Face Definition

Face Corner nodes Mid-edge nodes Mid-face node Oriented edges
Fi N1,N2,N3,N4 N5,N6,N7,N8 N9 E1,E2,E3,E4

Notes

N1,...,N9 Grid point identification number. Integer > 0 or blank, and N1 # N2 # ...#
N9. Grid points N1...N4 are in consecutive order about the quadrangle.

El1,...,E4 Edge identification number.

F1 Face identification number.

3.3.3 3-D (Volume) Elements

3-D elements represent a volume in 3-D space, and constitute the cells of a 3-D mesh. CGNS
supports four different shapes of 3-D elements — tetrahedra, pyramids, pentahedra, and hexahedra.

3.3.3.1 Tetrahedral Elements

CGNS supports two types of tetrahedral elements, TETRA_4 and TETRA_10. TETRA_4 elements are
composed of four nodes located at the four geometric corners of the tetrahedron. TETRA_10 elements
have six additional nodes, at the middle of each of the six edges.
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TETRA_4 TETRA_10

3
1
2
Edge Definition Face Definition
Oriented Corner Mid- Face Corner nodes Mid-edge nodes Oriented edges
edges nodes  node F1  N1,N3,N2 N7,N6, N5 -E3,-E2,-E1
El N1,N2 N5 F2 N1i,N2,N4 N5,N9, N8 E1, E5,-E4
E2 N2,N3 N6 F3 N2,N3,N4 N6,N10,N9 E2, E6,-Eb
E3 N3,N1 N7 F4 N3,N1,N4 N7,N8, N10 E3, E4,-E6
E4 N1,N4 N8
E5 N2,N4 N9
E6 N3,N4 N10
Notes
Ni,...,N10  Grid point identification number. Integer > 0 or blank, and N1 # N2 # ...#

N10. Grid points N1...N3 are in consecutive order about one trilateral face. The
cross product of a vector going from N1 to N2, with a vector going from N1 to
N3, must result in a vector oriented from face F1 toward N4.

El,...,E6 Edge identification number. The edges are oriented from the first to the second
node. A negative edge (e.g., ~E1) means that the edge is used in its reverse
direction.

F1,...,F4 Face identification number. The faces are oriented so that the cross product of
a vector from its first to second node, with a vector from its first to third node,
is oriented outward.

3.3.3.2 Pyramid Elements

CGNS supports two types of pyramid elements, PYRA_5 and PYRA_14. PYRA_5 elements are com-
posed of five nodes located at the five geometric corners of the pyramid. PYRA_14 elements have
nine additional nodes, eight located at the middle of each of the eight edges, and one at the cell
center.

20



PYRA_5

Edge Definition

Oriented

edges

El
E2
E3
E4
E5
E6
E7
E8

Notes

N1,..

E1l,..

Fi,...

Corner
nodes

N1,N2
N2,N3
N3,N4
N4,N1
N1,N5
N2,N5
N3,N5
N4,N5

.,N14

.,E8

Mid-
node

N6
N7

N9

N10
N11
N12
N13

Face Definition

PYRA_14

3 Conventions

Face Corner nodes Mid-edge nodes Oriented edges
F1 N1,N4,N3,N2 N9,N8, N7, N6 -E4,-E3,-E2,-E1
F2 N1,N2,N5 N6,N11,N10 E1, E6,-E5
F3 N2,N3,N5 N7,N12,N11 E2, E7,-E6
F4 N3,N4,N5 N8,N13,N12 E6, E8,-E7
F5 N4,N1,Nb5 N9,N10,N13 E4, E5,-E8

Grid point identification number. Integer > 0 or blank, and N1 ## N2 £ ... #
N14. Grid points N1...N4 are in consecutive order about the quadrilateral face.
The cross product of a vector going from N1 to N2, with a vector going from N1
to N3, must result in a vector oriented from face F1 toward N5. N14 is located
at the cell center.

Edge identification number. The edges are oriented from the first to the second
node. A negative edge (e.g., ~E1) means that the edge is used in its reverse

direction.

Face identification number. The faces are oriented so that the cross product of
a vector from its first to second node, with a vector from its first to third node,

is oriented outward.
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3.3.3.3 Pentahedral Elements

CGNS supports three types of pentahedral elements, PENTA_6, PENTA_15, and PENTA_18. PENTA_6
elements are composed of six nodes located at the six geometric corners of the pentahedron. In
addition, PENTA_15 and PENTA_18 elements have a node at the middle of each of the nine edges;
PENTA_18 adds a node at the middle of each of the three quadrilateral faces.

PENTA_6 PENTA_15

1 2 1 7 2

Edge Definition

22

Oriented Corner Mid-
edges nodes  node
El N1,N2 N7
E2 N2,N3 N8
E3 N3,N1 N9
E4 N1,N4 N10
E5 N2,N5 N1i1
E6 N3,N6 N12
E7 N4,N5 N13
E8 N5,N6 N14
E9 N6,N4 N15



Face Definition

3 Conventions

Face Corner nodes Mid-edge nodes Mid-face node Oriented edges

F1 N1i,N2,N5,N4 N7, N11,N13,N10 Ni6 E1, E5,-E7,-E4
F2 N2,N3,N6,N5 N8, N12,N14,N11 N17 E2, E6,-E8,-E5
F3 N3,N1,N4,N6 N9, N10,N15,N12 N18 E3, E4,-E9,-E6
F4 N1,N3,N2 N9, N8, N7 -E3,-E2,-E1

F5 N4,N5,N6 N13,N14,N15 E7, E8, E9
Notes

Ni,...,N18 Grid point identification number. Integer > 0 or blank, and N1 # N2 # ...#
N18. Grid points N1...N3 are in consecutive order about one trilateral face. Grid
points N4...N6 are in order in the same direction around the opposite trilateral
face.

E1,...,E9 Edge identification number. The edges are oriented from the first to the second
node. A negative edge (e.g., ~E1) means that the edge is used in its reverse
direction.

Fi,...,F5

Face identification number. The faces are oriented so that the cross product of

a vector from its first to second node, with a vector from its first to third node,
is oriented outward.

3.3.3.4 Hexahedral Elements

CGNS supports three types of hexahedral elements, HEXA_8, HEXA_20, and HEXA_27. HEXA_8 ele-
ments are composed of eight nodes located at the eight geometric corners of the hexahedron. In
addition, HEXA_20 and HEXA_27 elements have a node at the middle of each of the twelve edges;
HEXA_27 adds a node at the middle of each of the six faces, and one at the cell center.

HEXA_8

HEXA_20
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HEXA_27

Face Definition

Edge Definition

Oriented Corner
edges nodes
E1l N1,N2
E2 N2,N3
E3 N3,N4
E4 N4,N1
E5 N1,N5
E6 N2,N6
E7 N3,N7
E8 N4 ,N8
E9 N5,N6
E10 N6,N7
E11 N7,N8
E12 N8,N5

Face Corner nodes Mid-edge nodes Mid-face node Oriented edges

F1 N1,N4,N3,N2 N12,N11,N10,N9 N21 -E4,-E3, -E2,

F2 N1i,N2,N6,N56 N9, N14,N17,N13 N22 E1, E6, -E9,

F3 N2,N3,N7,N6 N10,N15,N18,N14 N23 E2, E7, -E10,

F4 N3,N4,N8,N7 N11,N16,N19,N15 N24 E3, E8, -El11,

F5 N1,N5,N8,N4 N13,N20,N16,N12 N25 E5,-E12,-E8,

F6 N5,N6,N7,N8 N17,N18,N19,N20 N26 E9, E10, E11, E12
Notes

N1,...,N27  Grid point identification number. Integer > 0 or blank, and N1 # N2 # ...#
N27. Grid points N1...N4 are in consecutive order about one quadrilateral face.
Grid points N5...N8 are in order in the same direction around the opposite
quadrilateral face.

El,...,E12 Edge identification number. The edges are oriented from the first to the second
node. A negative edge (e.g., -E1) means that the edge is used in its reverse
direction.

F1,...,F6 Face identification number. The faces are oriented so that the cross product of

a vector from its first to second node, with a vector from its first to third node,

is oriented outward.

3.3.4 Unstructured Grid Example

Consider an unstructured zone in the shape of a cube, with each edge of the zone having three
nodes. The resulting unstructured grid has a total of 27 nodes, as illustrated in the exploded figure

below.
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This zone contains eight hexahedral cells, numbered 1 to 8, and the cell connectivity is:

Element No. Element Connectivity

0 ~J O U W N~

57
6,
87

9’
14,
15,
17,
18,

4,10, 11, 14, 13
5,11, 12, 15, 14
7,13, 14, 17, 16
8, 14, 15, 18, 17
13, 19, 20, 23, 22
14, 20, 21, 24, 23
16, 22, 23, 26, 25
17, 23, 24, 27, 26

In addition to the cells, the boundary faces could also be added to the element definition of this
unstructured zone. There are 24 boundary faces in this zone, corresponding to element numbers 9
to 32. Each boundary face is of type QUAD_4. The table below shows the element connectivity of
each boundary face, as well as the element number and face number of its parent cell.
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Face Element No. Eleme.nt. Parent Parent
Connectivity Cell Face
Left 9 1,10, 13, 4 1 5
10 4,13,16, 7 3 5
11 10, 19, 22, 13 5 5
12 13, 22, 25, 16 7 5
Right 13 3, 6,15,12 2 3
14 6, 9,18,15 4 3
15 12, 15, 24, 21 6 3
16 15, 18, 27, 24 8 3
Bottom 17 1, 2,11, 10 1 2
18 2, 3,12,11 2 2
19 10, 11, 20, 19 5 2
20 11, 12, 21, 20 6 2
Top 21 7,16, 17, 8 3 4
22 8,17,18, 9 4 4
23 16, 25, 26, 17 7 4
24 17, 26, 27, 18 8 4
Back 25 1, 4, 5, 2 1 1
26 2, 5, 6, 3 2 1
27 4, 7, 8, 5 3 1
28 5 8, 9, 6 4 1
Front 29 19, 20, 23, 22 5 6
30 20, 21, 24, 23 6 6
31 22, 23, 26, 25 7 6
32 23, 24, 27, 26 8 6

3.4 Multizone Interfaces

Figure 2 depicts three types of multizone interfaces, shown for structured zones. The first type
is a 1-to-1 abutting interface, also referred to as matching or CO continuous. The interface is a
plane of vertices that are physically coincident between the adjacent zones. For structured zones,
grid-coordinate lines perpendicular to the interface are continuous from one zone to the next; in
3-D, a 1-to-1 abutting interface is usually a logically rectangular region.

The second type of interface is mismatched abutting, where two zones touch but do not overlap
(except for vertices and cell faces on the grid plane of the interface). Vertices on the interface
may not be physically coincident between the two zones. Figure 2b identifies the vertices and face
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e Left-zone vertices on interface

(a) 1-to-1 Abutting Interface

o Left-zone vertices on interface

x  Left-zone face-centers on interface

(b) Mismatched Abutting Interface

e Left-zone fringe points (vertices)
o Left-zone overset-hole points (vertices)

(c) Overset Interface

Figure 2: Structured-Grid Multizone Interface Types
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centers of the left zone that lay on the interface. Even for structured zones in 3-D, the vertices of
a zone that constitute an interface patch may not form a logically rectangular region.

The third type of multizone interface is called overset and occurs when two zones overlap; in 3-D,
the overlap is a 3-D region. For overset interfaces, one of the two zones takes precedence over the
other; this establishes which solution in the overlap region to retain and which to discard. The
region in a given zone where the solution is discarded is called an overset hole and the grid points
outlining the hole are called fringe points. Figure 2c depicts an overlap region between two zones.
The right zone takes precedence over the left zone, and the points identified in the figure are the
fringe points and overset-hole points for the left zone. In addition, for the zone taking precedence,
any bounding points (i.e. vertices on the bounding faces) of the zone that lay within the overlap
region must also be identified.

Overset interfaces may also include multiple layers of fringe points outlining holes and at zone
boundaries.

For the mismatched abutting and overset interfaces in Figure 2, the left zone plays the role of
receiver zone and the right plays the role of donor zone.
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This section defines and describes low-level structures types that are used in the definition of more
complex structures within the hierarchy.

4.1 Definition: DataClass_t

DataClass_t is an enumeration type that identifies the class of a given piece of data.

DataClass_t := Enumeration(
Null,
Dimensional,
NormalizedByDimensional,
NormalizedByUnknownDimensional,
NondimensionalParameter,
DimensionlessConstant,
UserDefined ) ;

These classes divide data into different categories depending on dimensional units or normalization
associated with the data. Dimensional specifies dimensional data. NormalizedByDimensional
specifies nondimensional data that is normalized by dimensional reference quantities. In contrast,
NormalizedByUnknownDimensional specifies nondimensional data typically found in completely
nondimensional databases, where all field and reference data is nondimensional. Nondimensional-
Parameter specifies nondimensional parameters such as Mach number and lift coefficient. Constants
such as 7w are designated by DimensionlessConstant. The distinction between these different
classes is further discussed in Section 5.

4.2 Definition: Descriptor_t

Descriptor_t is a documentation or annotation structure which contains a character string. Char-
acters allowed within the string include newlines, tabs and other special characters; this poten-
tially allows for unlimited documentation inclusion within the database. For example, a single
Descriptor_t structure could be used to ‘swallow’ an entire ASCII file. In the hierarchical struc-
tures defined in the next sections, each allows for the inclusion of multiple Descriptor_t substruc-
tures. Conventions could be made for names of often-used Descriptor_t structure entities, such
as ReadMe or YouReallyWantToReadMeFirst.

Descriptor_t :=
{
Data(char, 1, string_length) ; (r)
}

where string_length is the length of the character string.
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4.3 Definition: DimensionalUnits_t

DimensionalUnits_t describes the system of units used to measure dimensional data. It is com-
posed of a set of enumeration types that define the mass, length, time, temperature and angle
units.

MassUnits_t Enumeration( Null, Kilogram, Gram, Slug, PoundMass,

UserDefined ) ;

Enumeration( Null, Meter, Centimeter, Millimeter,
Foot, Inch, UserDefined ) ;

LengthUnits_t

TimeUnits_t Enumeration( Null, Second, UserDefined ) ;

Enumeration( Null, Kelvin, Celsius, Rankine,
Fahrenheit, UserDefined ) ;

TemperatureUnits_t

AngleUnits_t Enumeration( Null, Degree, Radian, UserDefined ) ;

DimensionalUnits_t

{

MassUnits_t MassUnits ; (r)
LengthUnits_t LengthUnits ; (r)
TimeUnits_t TimeUnits ; (r)
TemperatureUnits_t TemperatureUnits ; (r)
AngleUnits_t AngleUnits ; (r)
Y

System International (SI) units have MassUnits = Kilogram; LengthUnits = Meter; TimeUnits
= Second; TemperatureUnits = Kelvin; and AngleUnits = Radian.

For an entity of type DimensionalUnits_t, if all the elements of that entity have the value Null
(i.e. MassUnits = Null, etc.), this is equivalent to stating that the data described by the entity is
nondimensional.

4.4 Definition: DimensionalExponents_t

DimensionalExponents_t describes the dimensionality of data by defining the exponents associated
with each of the fundamental units.

DimensionalExponents_t :=

{

real MassExponent ; (r)
real LengthExponent ; (r)
real TimeExponent ; (r)
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real TemperatureExponent ; (r)
real AngleExponent ; (r)
Y

For example, an instance of DimensionalExponents_t that describes velocity is,

DimensionalExponents_t =

i

MassExponent = 0 ;
LengthExponent = +1 ;
TimeExponent = -1
TemperatureExponent = 0 ;
AngleExponent = 0 ;
3

4.5 Definition: GridLocation_t

GridLocation_t identifies locations with respect to the grid; it is an enumeration type.

GridLocation_t := Enumeration(
Null,
Vertex,
CellCenter,
FaceCenter,
IFaceCenter,
JFaceCenter,
KFaceCenter,
EdgeCenter,
UserDefined ) ;

Vertex is coincident with the grid vertices. CellCenter is the center of a cell; this is also appropriate
for entities associated with cells but not necessarily with a given location in a cell. For structured
zones, IFaceCenter is the center of a face in 3-D whose computational normal points in the 4
direction. JFaceCenter and KFaceCenter are similarly defined, again only for structured zones.
FaceCenter is the center of a generic face which can point in any coordinate direction. These are
also appropriate for entities associated with a face, but not located at a specific place on the face.
EdgeCenter is the center of an edge. See Section 3.2 for descriptions of cells, faces and edges.

All of the entities of type GridLocation_t defined in this document use a default value of Vertex.
4.6 Definition: IndexArray_t
IndexArray_t specifies an array of indices. An argument is included that allows for specifying the

data type of each index; typically the data type will be integer (int). IndexArray_t defines an
array of indices of size ArraySize, where the dimension of each index is IndexDimension.
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IndexArray_t< int IndexDimension, int ArraySize, DataType > :=

{
Data( DataType, 2, [IndexDimension,ArraySize] ) ; (r)
}

4.7 Definition: IndexRange_t

IndexRange_t specifies the beginning and ending indices of a subrange. The subrange may describe
a portion of a grid line, grid plane, or grid volume.

IndexRange_t< int IndexDimension > :=

{

int [IndexDimension] Begin ; ()
int [IndexDimension] End ; (r)
s

where Begin and End are the indices of the opposing corners of the subrange.

4.8 Definition: Rind_t

Rind_t describes the number of rind planes associated with a data array containing grid coordinates,
flow-solution data or any other grid-related discrete data for structured zones.

Rind_t< int IndexDimension > :=

{
int [2*IndexDimension] RindPlanes ; (r)

s

RindPlanes contains the number of rind planes attached to the minimum and maximum faces of a
zone. The face corresponding to each index n of RindPlanes in 3-D is:

n=1— ¢min n =2 — {-max
n=3 — j-min n=4— j-max
n=5 — k-min n=6 — k-max

For a 3-D grid whose ‘core’ size is IIxJJXKK, a value of RindPlanes = [a,b,c,d,e,f] indicates
that the range of indices for the grid with rind is:

¢ (1 - a, IT + b)

i (1 -c, 33+ d)
k: (1 - e, KK + f)
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This section defines the structure type DataArray_t for describing data arrays. This general-
purpose structure is used to declare data arrays and scalars throughout the CGNS hierarchy. It
is used to describe grid coordinates, flow-solution data, governing flow parameters, boundary-
condition data, and other information. For most of these different types of CFD data, we have also
established a list of standardized identifiers for entities of type DataArray_t. For example, Density
is used for data arrays containing static density. The list of standardized data-name identifiers is
provided in Appendix A.

We address five classes of data with the DataArray_t structure type:

dimensional data (e.g. velocity in units of m/s);

nondimensional data normalized by dimensional reference quantities;

)
)

c¢) nondimensional data with associated nondimensional reference quantities;
) nondimensional parameters (e.g. Reynolds number, pressure coefficient);
)

pure constants (e.g. 7, e).

The first two of these classes often occur within the same test case, where each piece of data is
either dimensional itself or normalized by a dimensional quantity. The third data class is typical
of a completely nondimensional test case, where all field data and reference quantities are nondi-
mensional. The forth class, nondimensional parameters, are universal in CFD, although not always
consistently defined. The individual components of nondimensional parameters may be data from
any of the first three classes.

Each of the five classes of data requires different information to describe dimensional units or
normalization associated with the data. These requirements are reflected in the structure definition
for DataArray_t.

The remainder of this section is as follows: the structure type DataArray_t is first defined. Then
the class identification and data manipulation is discussed in Section 5.2 for each of the five data
classes. Finally, examples of DataArray_t entities are presented in Section 5.3.

5.1 Definition: DataArray_t
DataArray_t describes a multi-dimensional data array of given type, dimensionality and size in
each dimension. The data may be dimensional, nondimensional or pure constants. Qualifiers are
provided to describe dimensional units or normalization information associated with the data.
DataArray_t< DataType, int Dimension, int[Dimension] DimensionValues > :=
{
List( Descriptor_t Descriptorl ... DescriptorN ) ; (o)

Data( DataType, Dimension, DimensionValues ) ; (r)

33



Standard Interface Data Structures

DataClass_t DataClass ; (o)
DimensionalUnits_t DimensionalUnits ; (o)
DimensionalExponents_t DimensionalExponents ; (o)
DataConversion_t DataConversion ; (o)
Y

Notes

1. Default names for the Descriptor_t list are as shown; users may choose other legitimate
names. Legitimate names must be unique within a given instance of DataArray_t and
shall not include the names DataClass, DimensionalUnits, DimensionalExponents, or
DataConversion.

2. Data() is the only required field for DataArray_t.

DataArray_t requires three structure parameters: Dimension is the dimensionality of the data
array; DimensionValues is an array of length Dimension that contains the size of the data arrays
in each dimension; and DataType is the data type of the data stored. DataType will usually be
real, but other data types are permissible.

The optional entities DataClass, DimensionalUnits, DimensionalExponents and DataConver-
sion provide information on dimensional units and normalization associated with the data. The
function of these qualifiers is provided in the next section.

This structure type is formulated to describe an array of scalars. Therefore, for vector quantities
(e.g. the position vector or the velocity vector), separate structure entities are required for each
component of the vector. For example, the cartesian coordinates of a 3-D grid are described by
three separate DataArray_t entities: one for z, one for y and one for z (see Example 7-A).

5.1.1 Definition: DataConversion_t

DataConversion_t contains conversion factors for recovering raw dimensional data from given
nondimensional data. These conversion factors are typically associated with nondimensional data
that is normalized by dimensional reference quantities.

DataConversion_t :=

{

real ConversionScale ; (r)
real ConversionOffset ; (r)
}

Given a nondimensional piece of data, Data(nondimensional), the conversion to ‘raw’ dimensional
form is:
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Data(raw) = Data(nondimensional)*ConversionScale + ConversionOffset

These conversion factors are further described in Section 5.2.2.

5.2 Data Manipulation

The optional entities of DataArray_t provide information for manipulating the data, including
changing units or normalization. This section describes the rules under which these optional entities
operate and the specific manipulations that can be performed on the data.

Within a given instance of DataArray_t, the class of data and all information required for manip-
ulations may be completely and precisely specified by the entities DataClass, DimensionalUnits,
DimensionalExponents and DataConversion. DataClass identifies the class of data and governs
the manipulations that can be performed. Each of the five data classes is treated separately in the
subsequent sections.

The entities DataClass and DimensionalUnits serve special functions in the CGNS hierarchy.
If DataClass is absent from a given instance of DataArray_t, then its value is determined from
‘global’ data. This global data may be set at any level of the CGNS hierarchy with the data set at
the lowest level taking precedence. DimensionalUnits may be similarly set by global data. The
rules for determining the appropriate set of global data to apply is further detailed in Section 6.3.

This alternate functionality provides a measure of economy in describing dimensional units or nor-
malization within the hierarchy. Examples that make use of global data are presented in Section 7.2
and Section 7.6 for grid and flow solution data. The complete two-zone case of Appendix B also
depicts this alternate functionality.

5.2.1 Dimensional Data

If DataClass = Dimensional, the data is dimensional. The optional qualifiers DimensionalUnits
and DimensionalExponents describe dimensional units associated with the data. These qualifiers
are provided to specify the system of dimensional units and the dimensional exponents, respectively.
For example, if the data is the z-component of velocity, then DimensionalUnits will state that the
pertinent dimensional units are, say, Meter and Second; DimensionalExponents will specify the
pertinent dimensional exponents are LengthExponent = 1 and TimeExponent = -1. Combining the
information gives the units m/s. Examples showing the use of these two qualifiers are provided in
Section 5.3.

If DimensionalUnits is absent, then the appropriate set of dimensional units is obtained from
‘global’ data. The rules for determining this appropriate set of ‘global’ dimensional units are
presented in Section 6.3.

If DimensionalExponents is absent, then the appropriate dimensional exponents can be determined
by convention if the specific instance of DataArray_t corresponds to one of the standardized data-
name identifiers listed in Appendix A. Otherwise, the exponents are unspecified. We strongly
recommend inclusion of the DimensionalExponents qualifier whenever the data is dimensional
and the instance of DataArray_t is not among the list of standardized identifiers.
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5.2.2 Nondimensional Data Normalized by Dimensional Quantities

If DataClass = NormalizedByDimensional, the data is nondimensional and is normalized by di-
mensional reference quantities. All optional entities in DataArray_t are used. DataConversion
contains factors to convert the nondimensional data to ‘raw’ dimensional data; these factors are
ConversionScale and ConversionOffset. The conversion process is as follows:

Data(raw) = Data(nondimensional)*ConversionScale + ConversionOffset

where Data(nondimensional) is the original nondimensional data, and Data(raw) is the converted
raw data. This converted raw data is dimensional, and the optional qualifiers DimensionalUnits
and DimensionalExponents describe the appropriate dimensional units and exponents. Note that
DimensionalUnits and DimensionalExponents also describe the units for ConversionScale and
ConversionOffset.

If DataConversion is absent, the equivalent defaults are ConversionScale = 1 and Conversion-
Offset = 0. If either DimensionalUnits or DimensionalExponents is absent, follow the rules
described in the previous section.

Note that functionally there is little difference between these first two data classes (DataClass =
Dimensional and NormalizedByDimensional). In the first case the data is dimensional, and in
the second, the converted raw data is dimensional. Also, the equivalent defaults for DataConver-
sion produce no changes in the data; hence, it is almost the same as stating the original data is
dimensional.

5.2.3 Nondimensional Data Normalized by Unknown Dimensional Quantities

If DataClass = NormalizedByUnknownDimensional, the data is nondimensional and is normalized
by some unspecified dimensional quantities. This type of data is typical of a completely nondimen-
sional test case, where all field data and all reference quantities are nondimensional.

Only the DimensionalExponents qualifier is used in this case, although it is expected that this
qualifier will be seldom utilized in practice. For entities of DataArray_t that are not among the
list of standardized data-name identifiers, the qualifier could provide useful information by defining
the exponents of the dimensional form of the nondimensional data.

Rather than providing qualifiers to describe the normalization of the data, we instead dictate that
all data of type NormalizedByUnknownDimensional in a given database be nondimensionalized
consistently. This is done by picking one set of mass, length, time and temperature scales and
normalizing all appropriate data by these scales. We describe this process in detail in the following.
Appendix B also shows a completely nondimensional database where consistent normalization is
used throughout.

The practice of nondimensionalization within flow solvers and other application codes is quite
popular. The problem with this practice is that to manipulate the data from a given code, one must
often know the particulars of the nondimensionalization used. This largely results from what we
call inconsistent normalization—more than the minimum required scales are used to normalize data
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within the code. For example, in the OVERFLOW flow solver, the following nondimensionalization
is used:

JNZZIL’/L, a:u/com ﬁ:p/pom
g=y/L,  D=v/ce,  P=p/(poock),
2:25/[/7 w:w/com /1:/1//#00:

where (z,y, z) are the cartesian coordinates, (u, v, w) are the cartesian components of velocity, p is
static density, p is static pressure, c is the static speed of sound, and p is the molecular viscosity. In
this example, tilde quantities (7) are nondimensional and all others are dimensional. Four dimen-
sional scales are used for normalization: L (a unit length), peo, oo and po,. However, only three
fundamental dimensional units are represented: mass, length and time. The extra normalizing
scale leads to inconsistent normalization. The primary consequence of this is additional nondi-
mensional parameters, such as Reynolds number, appearing in the nondimensionalized governing
equations where none are found in the original dimensional equations. Many definitions, including
skin friction coefficient, also have extra terms appearing in the nondimensionalized form. This adds
unnecessary complication to any data or equation manipulation associated with the flow solver.

Consistent normalization avoids many of these problems. Here the number of scales used for
normalization is the same as the number of fundamental dimensional units represented by the
data. Using consistent normalization, the resulting nondimensionalized form of equations and
definitions is identical to their original dimensional formulations. One piece of evidence to support
this assertion is that it is not possible to form any nondimensional parameters from the set of
dimensional scales used for normalization.

An important fallout of consistent normalization is that the actual scales used for normalization
become immaterial for all data manipulation processes. To illustrate this consider the following
nondimensionalization procedure: let M (mass), L (length) and 7' (time) be arbitrary dimensional
scales by which all data is normalized (neglect temperature data for the present). The nondimen-
sional data follows:

Y =a/L W =u/(L)T), = (ML),
y/:y/Lv U/:U/(L/T)7 p/:p/(M/(LTZ)),
Z=z/L, w=w/(L/T), p=p/(M/LT)),

where primed quantities are nondimensional and all others are dimensional.

Consider an existing database where all field data and all reference data is nondimensional and
normalized as shown. Assume the database has a single reference state given by,

x;ef = erf/L? u;ef = urCf/(L/T)7 p;ef = prCf/(M/L3)27
yllref = yTEf/L’ Ullref = Uref/(L/T)7 p;ef = pref/(M/(LT ))
leref = Zl‘ef/L7 w;ef - wref/(L/T)7 lu;“ef = Mref/(M/(LT))

If a user wanted to change the nondimensionalization of grid-point pressures, the procedure is
straightforward. Let the desired new normalization be given by pg']k = piji/(pretc’y), where all
terms on the right-hand-side are dimensional, and as such they are unknown to the database user.
However, the desired manipulation is possible using only nondimensional data provided in the
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database,
p;/jk = pijk/(prefcfef)
_opge ML [L/T}2
M/(LTZ) Pref

Cref

= pgjk/(ﬂief(cief)Q)
Thus, the desired renormalization is possible using the database’s nondimensional data as if it were
actually dimensional. There is, in fact, a high degree of equivalence between dimensional data and
consistently normalized nondimensional data. The procedure shown in this example should extend
to any desired renormalization, provided the needed reference-state quantities are included in the
database.

This example points out two stipulations that we now dictate for data in the class NormalizedBy-
UnknownDimensional,

(a) All nondimensional data within a given database that has DataClass = NormalizedBy-
UnknownDimensional shall be consistently normalized.

(b) Any nondimensional reference state appearing in a database should be sufficiently populated
with reference quantities to allow for renormalization procedures.

The second of these stipulations is somewhat ambiguous, but good practice would suggest that a
flow solver, for example, should output to the database enough static and/or stagnation reference
quantities to sufficiently define the state.

Appendix B shows an example of a well-populated reference state.

With these two stipulations, we contend the following;:

e The dimensional scales used to nondimensionalize all data are immaterial, and there is no
need to identify these quantities in a CGNS database.

e The dimensional scales need not be reference-state quantities provided in the database. For
example, a given database could contain freestream reference state conditions, but all the
data is normalized by sonic conditions (which are not provided in the database).

e All renormalization procedures can be carried out treating the data as if it were dimensional
with a consistent set of units.

e Any application code that internally uses consistent normalization can use the data provided
in a CGNS database without modification or transformation to the code’s internal normal-
ization.

Before ending this section, we note that the OVERFLOW flow solver mentioned above (or any
other application code that internally uses inconsistent normalization) could easily read and write
data to a nondimensional CGNS database that conforms to the above stipulations. On output, the
code could renormalize data so it is consistently normalized. Probably, the easiest method would
be to remove the molecular viscosity scale (1), and only use L, ps and ¢ for all normalizations
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(recall these are dimensional scales). The only change ffom the above example would be the
nondimensionalization of viscosity, which would become, fi = p/(pooCool). The code could then
output all field data as,

Tijk = wiji/L, Uijk = Uijk/Coos Pijk = Pijk/ Poos
Uijk = Yiji/ L, Dijk = Vijk/Coos Pijk = Pijk/ (PooC2e),
Zijk = Zijk/ L, Wijk = Wijk/Coor  Hijl = Mijk/(PooCool),

and output the freestream reference quantities,

Upo = uoo/cooa Poo = poo/poo =1,

Voo = voo/coo; Doo = poo/(poocgo) = 1/77

Woo = Weo/Coo, Poo = NOOZ(POOCOOL) ~ O(1/Re),
Coo = Coo/Coo = 1, L=L/L=1,

where + is the specific heat ratio (assumes a perfect gas) and Re is the Reynolds number.

On input, the flow solver should be able to recover its internal normalizations from the data in a
nondimensional CGNS database by treating the data as if it were dimensional.

5.2.4 Nondimensional Parameters

If DataClass = NondimensionalParameter, the data is a nondimensional parameter (or array
of nondimensional parameters). Examples include Mach number, Reynolds number and pressure
coefficient. These parameters are prevalent in CFD, although their definitions tend to vary be-
tween different application codes. A list of standardized data-name identifiers for nondimensional
parameters is provided in Appendix A.4.

We distinguish nondimensional parameters from other data classes by the fact that they are always
dimensionless. In a completely nondimensional database, they are distinct in that their normaliza-
tion is not necessarily consistent with other data.

Typically, the DimensionalUnits, DimensionalExponents and DataConversion qualifiers are not
used for nondimensional parameters; although, there are a few situations where they may be used
(these are discussed below). Rather than rely on optional qualifiers to describe the normalization,
we establish the convention that any nondimensional parameters should be accompanied by their
defining scales; this is further discussed in Appendix A.4. An example is Reynolds number defined
as Re = VLp/v, where V, Lr and v are velocity, length, and viscosity scales, respectively. Note
that these defining scales may be dimensional or nondimensional data. We establish the data-name
identifiers Reynolds, Reynolds_Velocity, Reynolds_Length and Reynolds_ViscosityKinematic
for the Reynolds number and its defining scales. Anywhere an instance of DataArray_t is found
with the identifier Reynolds, there should also be entities for the defining scales. An example of
this use for Reynolds number is given in Section 5.3.

In certain situations, it may be more convenient to use the optional qualifiers of DataArray_t to
describe the normalization used in nondimensional parameters. These situations must satisfy two
requirements: First, the defining scales are dimensional; and second, the nondimensional parameter
is a normalization of a single ‘raw’ data quantity and it is clear what this raw data is. Examples
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that satisfy this second constraint are pressure coefficient, where the raw data is static pressure, and
lift coefficient, where the raw data is the lift force. Conversely, Reynolds number is a parameter
that violates the second requirement—there are three pieces of raw data rather than one that
make up Re. For nondimensional parameters that satisfy these two requirements, the qualifiers
DimensionalUnits, DimensionalExponents and DataConversion may be used as in Section 5.2.2
to recover the raw dimensional data.

5.2.5 Dimensionless Constants

If DataClass = DimensionlessConstant, the data is a constant (or array of constants) with no as-
sociated dimensional units. The DimensionalUnits, DimensionalExponents and DataConversion
qualifiers are not used.

5.3 Data-Array Examples

This section presents five examples of data-array entities and illustrates the use of optional infor-
mation for describing dimensional and nondimensional data.

Example 5-A: One-Dimensional Data Array, Constants

A one-dimensional array of integers; the array is the integers from 1 to 10. The data is pure
constants.

! DataType = int
! Dimension = 1
! DimensionValues = 10
DataArray_t<int, 1, 10> Datal =
{{
Data(int, 1, 10) = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] ;

DataClass_t DataClass = DimensionlessConstant ;

3 -

The structure parameters for DataArray_t state the data is an one-dimensional integer array of
length ten. The value of DataClass indicates the data is unitless constants.

Example 5-B: Two-Dimensional Data Array, Pressures

A two-dimensional array of pressures with size 11 x 9 given by the array P(i,j). The data is
dimensional with units of N/m? (i.e., kg/(m-s?)). Note that Pressure is the data-name identifier
for static pressure.

! DataType = real

! Dimension = 2

! DimensionValues = [11,9]
DataArray_t<real, 2, [11,9]> Pressure =
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{{
Data(real, 2, [11,9])

(P(i,3), i=1,11), j=1,9) ;

DataClass_t DataClass Dimensional ;

DimensionalUnits_t DimensionalUnits =

i
MassUnits = Kilogram ;
LengthUnits = Meter ;
TimeUnits = Second ;
TemperatureUnits = Null ;
AngleUnits = Null ;
I

DimensionalExponents_t DimensionalExponents =
i
MassExponent = +1 ;
LengthExponent =-1;
TimeExponent = -2 ;
TemperatureExponent = 0 ;
AngleExponent = 0 ;
I

s

From the data-name identifier conventions presented in Appendix A, Pressure has a floating-point
data type; hence, the appropriate structure parameter for DataArray_t is real.

The value of DataClass indicates that the data is dimensional, and both the dimensional units
and dimensional exponents are provided. DimensionalUnits specifies that the system of units is
kg-m-s, and DimensionalExponents specified the appropriate exponents for pressure. Combining
the information gives pressure as kg/(m-s?). DimensionalExponents could have been defaulted,
since the dimensional exponents are given in Appendix A for the data-name identifier Pressure.

Note that FORTRAN multidimensional array indexing is used to store the data; this is reflected in
the FORTRAN-like implied do-loops for P(i,j).

Example 5-C: Three-Dimensional Data Array, Nondimensional Static Enthalpy

A 3-D array of size 33 x 9 x 17 containing nondimensional static enthalpy. The data is normalized
by freestream velocity as follows:

_ hy i

higr = —3%

Qref

)

where Bm-,k is nondimensional static enthalpy. The freestream velocity is dimensional with a value
of 10 m/s.

! DataType = real
! Dimension = 3
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! DimensionValues = [33,9,17]
DataArray_t<real, 3, [33,9,17]> Enthalpy =
{{
Data(real, 3, [33,9,17]) = (((H(i,j,k), i=1,33), j=1,9), k=1,17) ;

DataClass_t DataClass = NormalizedByDimensional ;

DataConversion_t DataConversion =

St

real ConversionScale = 100 ;
real ConversionOffset = 0 ;
3

DimensionalUnits_t DimensionalUnits =
i
MassUnits = Null ;
LengthUnits = Meter ;
TimeUnits = Second ;
TemperatureUnits = Null ;
AngleUnits = Null ;
s

DimensionalExponents_t DimensionalExponents =
i
MassExponent = 0 ;
LengthExponent = +2 ;
TimeExponent = -2 ;
TemperatureExponent = 0 ;
AngleExponent = 0
3

s

From Appendix A, the identifier for static enthalpy is Enthalpy and its data type is real.

The value of DataClass indicates that the data is nondimensional and normalized by a dimensional
reference quantity. DataConversion provides the conversion factors for recovering the raw static
enthalpy, which has units of m?/s? as indicated by DimensionalUnits and DimensionalExponents.
Note that DimensionalExponents could have been defaulted using the conventions for the data-
name identifier Enthalpy.

Example 5-D: Three-Dimensional Data Array, Nondimensional Database

The previous example for nondimensional enthalpy is repeated for a completely nondimensional
database.

! DataType = real
! Dimension = 3
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! DimensionValues = [33,9,17]
DataArray_t<real, 3, [33,9,17]> Enthalpy =
{{
Data(real, 3, [33,9,17]) = (((H(i,j,k), i=1,33), j=1,9), k=1,17) ;

DataClass_t DataClass = NormalizedByUnknownDimensional ;

1}
The value of DataClass indicates the appropriate class.

Example 5-E: Data Arrays for Reynolds Number

Reynolds number of 1.554 x 105 based on a velocity scale of 10 m/s, a length scale of 2.3 m and a
kinematic viscosity scale of 1.48x107° m?/s. Assume the database has globally set the dimensional
units to kg-m-s and the global default data class to dimensional (DataClass = Dimensional).

! DataType = real
! Dimension =1
! DimensionValues = 1
DataArray_t<real, 1, 1> Reynolds =
{H{
Data(real, 1, 1) = 1.554e+06 ;

DataClass_t DataClass = NondimensionalParameter ;

s
DataArray_t<real, 1, 1> Reynolds_Velocity =
{{
Data(real, 1, 1) = 10. ;
s
DataArray_t<real, 1, 1> Reynolds_Length =
a8
Data(real, 1, 1) = 2.3 ;
s
DataArray_t<real, 1, 1> Reynolds_ViscosityKinematic =
i
Data(real, 1, 1) = 1.48e-05 ;
s

Reynolds contains the value of the Reynolds number, and the value of its DataClass qualifier
designates it as a nondimensional parameter. By conventions described in Appendix A.4, the
defining scales are contained in the associated entities Reynolds_Velocity, Reynolds_Length,
and Reynolds_ViscosityKinematic. Since each of these entities contain no qualifiers, global
information is used to decipher that they are all dimensional with kg-m-s units. The structure
parameters for each DataArray_t entity state that they contain a real scalar.
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If a user wanted to convey the dimensional units of the defining scales using optional qualifiers
of DataArray_t, then the last three entities in this example would have a form similar to that in
Example 5-B.

44



6 Hierarchical Structures

This section presents the structure-type definitions for the top levels of the CGNS hierarchy. As
stated in Section 2, the hierarchy is topologically based, where the overall organization is by zones.
All information pertaining to a given zone, including grid coordinates, flow solution, and other
related data, is contained within that zone’s structure entity. Figure 1 depicts this topologically
based hierarchy. The CGNS database entry level structure type is defined in Section 6.1, and
the zone structure is defined in Section 6.2. This section concludes with a discussion of globally
applicable data.

6.1 CGNS Entry Level Structure Definition: CGNSBase_t

The highest level structure in a CGNS database is CGNSBase_t. It contains the cell dimension and
physical dimension of the computational grid and lists of zones and families making up the domain.
Globally applicable information, including a reference state, a set of flow equations, dimensional
units, time step or iteration information, and convergence history are also attached. In addition,
structures for describing or annotating the database are also provided; these same descriptive
mechanisms are provided for structures at all levels of the hierarchy.

CGNSBase_t :=

{

List( Descriptor_t Descriptorl ... DescriptorN ) ; (o)
int CellDimension ; (r)
int PhysicalDimension ; (r)
BaseIlterativeData_t BaselterativeData ; (o)
List( Zone_t<CellDimension, PhysicalDimension> Zonel ... ZoneN ) ; (o)
ReferenceState_t ReferenceState ; (o)
SimulationType_t SimulationType ; (o)
DataClass_t DataClass ; (o)
DimensionalUnits_t DimensionalUnits ; (o)
FlowEquationSet_t<CellDimension> FlowEquationSet ; (o)
ConvergenceHistory_t GlobalConvergenceHistory ; (o)
List( IntegralData_t IntegralDatal... IntegralDatalN ) ; (o)
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List( Family_t Familyl... FamilyN ) ; (o)
List( UserDefinedData_t UserDefinedDatal ... UserDefinedDataN ) ; (o)
}

Notes

1. Default names for the Descriptor_t, Zone_t, IntegralData_t, Family_t, and UserDe-
finedData_t lists are as shown; users may choose other legitimate names. Legitimate names
must be unique at this level and shall not include the names BaseIterativeData, Dat-—
aClass, DimensionalUnits, FlowEquationSet, GlobalConvergenceHistory, ReferenceS-
tate, or SimulationType.

2. The number of entities of type Zone_t defines the number of zones in the domain.

3. CellDimension and PhysicalDimension are the only required fields. The Descriptor_t,
Zone_t and IntegralData_t lists may be empty, and all other optional fields absent.

Note that we make the distinction between the following:

IndexDimension Number of different indices required to reference a node (e.g., 1 = 1,
2=14,7,3=1,5,k)
CellDimension Dimensionality of the cell in the mesh (e.g., 3 for a volume cell, 2 for a

face cell)

PhysicalDimension  Number of coordinates required to define a node position (e.g., 1 for
1-D, 2 for 2-D, 3 for 3-D)

These three dimensions may differ depending on the mesh. For example, an unstructured triangular
surface mesh representing the wet surface of an aircraft will have:

e IndexDimension = 1 (always for unstructured)
e CellDimension = 2 (face elements)

e PhysicalDimension = 3 (needs z, y, z coordinates since it is a 3D surface)

For a structured zone, the quantities IndexDimension and CellDimension are always equal. For
an unstructured zone, IndexDimension always equals 1. Therefore, storing CellDimension at the
CGNSBase_t level will automatically define the IndexDimension value for each zone.

On the other hand we assume that all zones of the base have the same CellDimension, e.g., if
CellDimension is 3, all zones must be composed of 3D cells within the CGNSBase_t.

We need IndexDimension for both structured and unstructured zones in order to use original data
structures such as GridCoordinates_t, FlowSolution_t, DiscreteData_t, etc. CellDimension
is necessary to express the interpolants in ZoneConnectivity with an unstructured zone (mis-
match or overset connectivity). When the cells are bidimensional, two interpolants per node are
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required, while when the cells are tridimensional, three interpolants per node must be provided.
PhysicalDimension becomes useful when expressing quantities such as the InwardNormallist in
the BC_t data structure. It’s possible to have a mesh where IndexDimension = 2 but the normal
vectors still require z, y, z components in order to be properly defined. Consider, for example, a
structured surface mesh in the 3D space.

Information about the number of time steps or iterations being recorded, and the time and/or
iteration values at each step, may be contained in the BaseIterativeData structure.

Data specific to each zone in a multizone case is contained in the list of Zone_t structure entities.

Reference data applicable to the entire CGNS database is contained in the ReferenceState struc-
ture; quantities such as Reynolds number and freestream Mach number are contained here (for
external flow problems).

SimulationType is an enumeration type identifying the type of simulation.

SimulationType_t := Enumeration (
Null,
UserDefined,
TimeAccurate,
NonTimeAccurate ) ;

DataClass describes the global default for the class of data contained in the CGNS database. If
the CGNS database contains dimensional data (e.g. velocity with units of m/s), DimensionalUnits
may be used to describe the system of units employed.

FlowEquationSet contains a description of the governing flow equations associated with the entire
CGNS database. This structure contains information on the general class of governing equations
(e.g. Euler or Navier-Stokes), equation sets required for closure, including turbulence modeling and
equations of state, and constants associated with the equations.

DataClass, DimensionalUnits, ReferenceState and FlowEquationSet have special function in
the CGNS hierarchy. They are globally applicable throughout the database, but their precedence
may be superseded by local entities (e.g. within a given zone). The scope of these entities and the
rules for determining precedence are treated in Section 6.3.

Globally relevant convergence history information is contained in GlobalConvergenceHistory.
This convergence information includes total configuration forces, moments, and global residual and
solution-change norms taken over all the zones.

Miscellaneous global data may be contained in the IntegralData_t list. Candidates for inclusion
here are global forces and moments.

The Family_t data structure, defined in Section 12.6, is used to record geometry reference data. It
may also include boundary conditions linked to geometry patches. For the purpose of defining ma-
terial properties, families may also be defined for groups of elements. The family-mesh association
is defined under the Zone_t and BC_t data structures by specifying the family name corresponding
to a zone or a boundary patch.
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The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

6.2 Zone Structure Definition: Zone_t

The Zone_t structure contains all information pertinent to an individual zone. This information
includes the zone type, the number of cells and vertices making up the grid in that zone, the
physical coordinates of the grid vertices, grid motion information, the family, the flow solution,
zone interface connectivity, boundary conditions, and zonal convergence history data. Zonal data
may be recorded at multiple time steps or iterations. In addition, this structure contains a reference
state, a set of flow equations and dimensional units that are all unique to the zone. For unstructured
zones, the element connectivity may also be recorded.

ZoneType_t := Enumeration(
Null,
Structured,
Unstructured,

UserDefined ) ;

Zone_t< int CellDimension, int PhysicalDimension > :=

{

List( Descriptor_t Descriptorl ... DescriptorN ) ; (o)
ZoneType_t ZoneType ; (r)
int [IndexDimension] VertexSize ; (r)
int[IndexDimension] CellSize ; (r)
int [IndexDimension] VertexSizeBoundary ; (o/d)

List( GridCoordinates_t<IndexDimension, VertexSize>

GridCoordinates MovedGridl ... MovedGridN ) ; (o)
List( Elements_t Elementsl ... ElementsN ) ; (o)
List( RigidGridMotion_t RigidGridMotionl ... RigidGridMotionN ) ; (o)

List( ArbitraryGridMotion_t
ArbitraryGridMotionl ... ArbitraryGridMotionN ) ; (o)

FamilyName_t FamilyName ; (o)

List( FlowSolution_t<IndexDimension, VertexSize, CellSize>
FlowSolutionl ... FlowSolutionN ) ; (o)
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List( DiscreteData_t<IndexDimension, VertexSize, CellSize>
DiscreteDatal ... DiscreteDataN ) ; (o)

List( IntegralData_t IntegralDatal ... IntegralDataN ) ; (o)

ZoneGridConnectivity_t<IndexDimension, CellDimension>

ZoneGridConnectivity ; (o)
ZoneBC_t<IndexDimension, PhysicalDimension> ZoneBC ; (o)
ZonelterativeData_t<NumberOfSteps> ZonelterativeData ; (o)
ReferenceState_t ReferenceState ; (o)
DataClass_t DataClass ; (o)
DimensionalUnits_t DimensionalUnits ; (o)
FlowEquationSet_t<CellDimension> FlowEquationSet ; (o)
ConvergenceHistory_t ZoneConvergenceHistory ; (o)
List( UserDefinedData_t UserDefinedDatal ... UserDefinedDataN ) ; (o)
int Ordinal ; (o)
+

Notes

1. Default names for the Descriptor_t, Elements_t, RigidGridMotion_t, ArbitraryGrid-
Motion_t, FlowSolution_t, DiscreteData_t, IntegralData_t, and UserDefinedData_t
lists are as shown; users may choose other legitimate names. Legitimate names must be
unique within a given instance of Zone_t and shall not include the names DataClass, Di-
mensionalUnits, FamilyName, FlowEquationSet, GridCoordinates, Ordinal, ReferenceS-
tate, ZoneBC, ZoneConvergenceHistory, ZoneGridConnectivity, ZonelterativeData, or
ZoneType.

2. The original grid coordinates should have the name GridCoordinates. Default names for
the remaining entities in the GridCoordinates_t list are as shown; users may choose other
legitimate names, subject to the restrictions listed in the previous note.

3. ZoneType, VertexSize, and CellSize are the only required fields within the Zone_t struc-
ture.

Zone_t requires the parameters CellDimension and PhysicalDimension. CellDimension, along
with the type of zone, determines IndexDimension; if the zone type is Unstructured, IndexDi-
mension = 1, and if the zone type is Structured, IndexDimension = CellDimension. These three
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structure parameters identify the dimensionality of the grid-size arrays. One or more of them are
passed on to the grid coordinates, flow solution, interface connectivity, boundary condition and
flow-equation description structures.

VertexSize is the number of vertices in each index direction, and CellSize is the number of cells
in each direction; for structured grids in 3-D, CellSize = VertexSize - [1,1,1]. VertexSize
is the number of vertices defining ‘the grid’ or the domain (i.e. without rind points); CellSize is
the number of cells on the interior of the domain. These two grid-size arrays are passed onto the
grid-coordinate, flow-solution and discrete-data substructures.

If the nodes are sorted between internal nodes and boundary nodes, then the optional parameter
VertexSizeBoundary must be set equal to the number of boundary nodes. If the nodes are sorted,
the grid coordinate vector must first include the boundary nodes, followed by the internal nodes.
By default, VertexSizeBoundary equals zero, meaning that the nodes are unsorted. This option
is only useful for unstructured zones. For structured zones, VertexSizeBoundary always equals 0
in all index directions.

The GridCoordinates_t structure defines “the grid”; it contains the physical coordinates of the
grid vertices, and may optionally contain physical coordinates of rind or ghost points. The original
grid is contained in GridCoordinates. Additional GridCoordinates_t data structures are allowed,
to store the grid at multiple time steps or iterations.

When the grid nodes are sorted, the DataArray_t in GridCoordinates_t lists first the data for
the boundary nodes, then the data for the internal nodes.

The Elements_t data structure contains unstructured elements data such as connectivity, element
type, parent elements, etc.

The RigidGridMotion_t and ArbitraryGridMotion_t data structures contain information defin-
ing rigid and arbitrary (i.e., deforming) grid motion.

FamilyName identifies to which family a zone belongs. Families may be used to define material
properties.

Flow-solution quantities are contained in the list of FlowSolution_t structures. Each instance of
the FlowSolution_t structure is only allowed to contain data at a single grid location (vertices,
cell-centers, etc.); multiple FlowSolution_t structures are provided to store flow-solution data at
different grid locations, to record different solutions at the same grid location, or to store solutions
at multiple time steps or iterations. These structures may optionally contain solution data defined
at rind points.

Miscellaneous discrete field data is contained in the list of DiscreteData_t structures. Candidate
information includes residuals, fluxes and other related discrete data that is considered auxiliary to
the flow solution. Likewise, miscellaneous zone-specific global data, other than reference-state data
and convergence history information, is contained in the list of IntegralData_t structures. It is
envisioned that these structures will be seldom used in practice but are provided nonetheless.

For unstructured zones only, the node-based DataArray_t vectors (GridLocation = Vertex) in
FlowSolution_t or DiscreteData_t must follow exactly the same ordering as the GridCoordi-
nates vector. If the nodes are sorted (VertexSizeBoundary # 0), the data on the boundary nodes
must be listed first, followed by the data on the internal nodes. Note that the order in which
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the node-based data are recorded must follow exactly the node ordering in GridCoordinates_t,
to be able to associate the data to the correct nodes. For element-based data (GridLocation =
CellCenter), the FlowSolution_t or DiscreteData_t data arrays must list the data values for
each element, in the same order as the elements are listed in ElementConnectivity.

All interface connectivity information, including identification of overset-grid holes, for a given zone
is contained in ZoneGridConnectivity.

All boundary condition information pertaining to a zone is contained in ZoneBC_t.

The ZoneIterativeData_t data structure may be used to record pointers to zonal data at multiple
time steps or iterations.

Reference-state data specific to an individual zone is contained in the ReferenceState structure.

DataClass defines the zonal default for the class of data contained in the zone and its substructures.
If a zone contains dimensional data, DimensionalUnits may be used to describe the system of
dimensional units employed.

If a set of flow equations are specific to a given zone, these may be described in FlowEquationSet.
For example, if a single zone within the domain is inviscid, whereas all other are turbulent, then
this zone-specific equation set could be used to describe the special zone.

DataClass, DimensionalUnits, ReferenceState and FlowEquationSet have special function in
the hierarchy. They are applicable throughout a given zone, but their precedence may be superseded
by local entities contained in the zone’s substructures. If any of these entities are present within a
given instance of Zone_t, they take precedence over the corresponding global entities contained in
database’s CGNSBase_t entity. These precedence rules are further discussed in Section 6.3.

Convergence history information applicable to the zone is contained in ZoneConvergenceHistory;
this includes residual and solution-change norms.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

Ordinal is user-defined and has no restrictions on the values that it can contain. It is included
for backward compatibility to assist implementation of the CGNS system into applications whose
I/O depends heavily on the numbering of zones. Since there are no restrictions on the values
contained in Ordinal (or that Ordinal is even provided), there is no guarantee that the zones in
an existing CGNS database will have sequential values from 1 to N without holes or repetitions.
Use of Ordinal is discouraged and is on a user-beware basis.

6.3 Precedence Rules and Scope Within the Hierarchy

The dependence of a structure entity’s information on data contained at higher levels of the hierar-
chy is typically explicitly expressed through structure parameters. For example, all arrays within
Zone_t depend on the dimensionality of the computational grid. This dimensionality is passed
down to a Zone_t entity through a structure parameter in the definition of Zone_t.

We have established an alternate dependency for a limited number of entities that is not explicitly
stated in the structure type definitions. These special situations include entities for describing data
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class, system of dimensional units, reference states and flow equation sets. At each level of the
hierarchy (where appropriate), entities for describing this information are defined, and if present
they take precedence over all corresponding information existing at higher levels of the CGNS
hierarchy. Essentially, we have established globally applicable data with provisions for recursively
overriding it with local data.

Specifically, the entities that follow this alternate dependency are:

e FlowEquationSet_t FlowEquationSet,
e ReferenceState_t ReferenceState,
e DataClass_t DataClass,

e DimensionalUnits_t DimensionalUnits.

FlowEquationSet contains a description of the governing flow equations (see Section 10); Refer-
enceState describes a set of reference state flow conditions (see Section 12.1); DataClass defines
the class of data (e.g. dimensional or nondimensional—see Section 4.1 and Section 5); and Dimen-
sionalUnits specifies the system of units used for dimensional data (see Section 4.3).

All of these entities may be defined within the highest level CGNSBase_t structure, and if present in a
given database, establish globally applicable information; these may also be considered to be global
defaults. Each of these four entities may also be defined within the Zone_t structure. If present in
a given instance of Zone_t, they supersede the global data and establish new defaults which apply
only within that zone. For example, if a different set of flow equations is solved within a given zone
than is solved in the rest of the flowfield, then this can be conveyed through FlowEquationSet.

In this case, one FlowEquationSet entity would be placed within CGNSBase_t to state the globally
applicable flow equations, and a second FlowEquationSet entity would be placed within the odd
zone (within its instance of Zone_t); this second FlowEquationSet entity supersedes the first only
within the odd zone.

In addition to its presence in CGNSBase_t and Zone_t, ReferenceState may also be defined within
the boundary-condition structure types to establish reference states applicable to one or more
boundary-condition patches. Actually, ReferenceState entities can be defined at several levels
of the boundary-condition hierarchy to allow flexibility in setting the appropriate reference state
conditions (see Section 9.1 and subsequent sections).

DataClass and DimensionalUnits are used within entities describing data arrays (see the Data-
Array_t type definition in Section 5.1). They classify the data and specify its system of units if
dimensional. If these entities are absent from a particular instance of DataArray_t, the information
is derived from appropriate global data. DataClass and DimensionalUnits are also declared in
all intermediate structure types that directly or indirectly contain DataArray_t entities. Examples
include GridCoordinates_t (Section 7.1), FlowSolution_t (Section 7.5), BC_t (Section 9.3) and
ReferenceState_t (Section 12.1). The same precedence rules apply—lower-level entities supersede
higher-level entities.

It is envisioned that in practice, the use of globally applicable data will be the norm rather than the
exception. It provides a measure of economy throughout the CGNS database in many situations.
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For example, when creating a database where the vast majority of data arrays are dimensional and
use a consistent set of units, DataClass and DimensionalUnits can be set appropriately at the
CGNSBase_t level and thereafter omitted when outputting data.
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This section defines structure types for describing the grid coordinates, element data, and flow
solution data pertaining to a zone. Entities of each of the structure types defined in this section
are contained in the Zone_t structure (see Section 6.2).

7.1 Grid Coordinates Structure Definition: GridCoordinates_t

The physical coordinates of the grid vertices are described by the GridCoordinates_t structure.
This structure contains a list for the data arrays of the individual components of the position
vector. It also provides a mechanism for identifying rind-point data included within the position-
vector arrays.

GridCoordinates_t< int IndexDimension, int VertexSize[IndexDimension] > :=
{
List( Descriptor_t Descriptorl ... DescriptorN ) ; (o)

Rind_t<IndexDimension> Rind ; (o/4d)

List( DataArray_t<DataType, IndexDimension, DataSize[]>

DataArrayl ... DataArrayN ) ; (o)
DataClass_t DataClass ; (o)
DimensionalUnits_t DimensionalUnits ; (o)
List( UserDefinedData_t UserDefinedDatal ... UserDefinedDataN ) ; (o)
+

Notes

1. Default names for the Descriptor_t, DataArray_t, and UserDefinedData_t lists are as
shown; users may choose other legitimate names. Legitimate names must be unique within
a given instance of GridCoordinates_t and shall not include the names DataClass, Dimen-
sionalUnits, or Rind.

2. There are no required fields for GridCoordinates_t. Rind has a default if absent; the default
is equivalent to having a Rind structure whose RindPlanes array contains all zeros (see
Section 4.8).

3. The structure parameter DataType must be consistent with the data stored in the DataAr-
ray_t substructures (see Section 5.1).

4. For unstructured zones, rind planes are not meaningful and should not be used.

GridCoordinates_t requires two structure parameters: IndexDimension identifies the dimension-
ality of the grid-size arrays, and VertexSize is the number of vertices in each index direction
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excluding rind points. For unstructured zones, IndexDimension is always 1 and VertexSize is the
total number of vertices.

The grid-coordinates data is stored in the list of DataArray_t entities; each DataArray_t structure
entity may contain a single component of the position vector (e.g. three separate DataArray_t
entities are used for z, y, and z). Standardized data-name identifiers for the grid coordinates are
described in Appendix A.

Rind is an optional field that indicates the number of rind planes included in the grid-coordinates
data for structured zones. If Rind is absent, then the DataArray_t structure entities contain only
‘core’ vertices of a zone; ‘core’ refers to all interior and bounding vertices of a zone — VertexSize
is the number of ‘core’ vertices. ‘Core’ vertices in a zone are assumed to begin at [1,1,1] (for a
structured zone in 3-D) and end at VertexSize. If Rind is present, it will provide information on
the number of ‘rind’ points in addition to the ‘core’ points that are contained in the DataArray_t
structures.

DataClass defines the default class for data contained in the DataArray_t entities. For dimensional
grid coordinates, DimensionalUnits may be used to describe the system of units employed. If
present, these two entities take precedence over the corresponding entities at higher levels of the
CGNS hierarchy. The rules for determining precedence of entities of this type are discussed in
Section 6.3. An example that uses these grid-coordinate defaults is shown in Section 7.2.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

FUNCTION DataSizel[]:

return value: one-dimensional int array of length IndexDimension
dependencies: IndexDimension, VertexSize[], Rind

GridCoordinates_t requires a single structure function, named DataSize, to identify the array
sizes of the grid-coordinates data. A function is required for the following reasons:

e the entire grid, including both ‘core’ and ‘rind’ points, is stored in the DataArray_t entities;

e the DataArray_t structure is simple in that it doesn’t know anything about ‘core’ versus
‘rind’ data; it just knows that it contains data of some given size;

e to make all the DataArray_t entities syntactically consistent in their size (i.e. by syntax
entities containing z, y and z must have the same dimensionality and dimension sizes), the
size of the array is passed onto the DataArray_t structure as a parameter.

if (Rind is absent) then
{
DataSize[] = VertexSizel[] ;
}

else if (Rind is present) then

{
DataSize[] = VertexSizel[] + [a + b,...] ;
}
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where RindPlanes = [a,b,...] (see Section 4.8 for the definition of RindPlanes).

7.2 Grid Coordinates Examples

This section contains examples of grid coordinates. These examples show the storage of the grid-
coordinate data arrays, as well as different mechanisms for describing the class of data and the
system of units or normalization.

Example 7-A: Cartesian Coordinates for a 2-D Structured Grid

Cartesian coordinates for a 2-D grid of size 17 x 33; the data arrays include only core vertices, and
the coordinates are in units of feet.

! IndexDimension = 2
! VertexSize = [17,33]
GridCoordinates_t<2, [17,33]> GridCoordinates =

{{
DataArray_t<real, 2, [17,33]> CoordinateX =

a8
Data(real, 2, [17,33]) = ((x(i,j), i=1,17), j=1,33) ;

DataClass_t DataClass = Dimensional ;

DimensionalUnits_t DimensionalUnits =

{H
MassUnits = Null ;
LengthUnits = Foot ;
TimeUnits = Null ;
TemperatureUnits = Null ;
AngleUnits = Null ;
s

3

DataArray_t<real, 2, [17,33]> CoordinateY =
{{
Data(real, 2, [17,33]) = ((y(i,j), i=1,17), j=1,33) ;

DataClass_t DataClass = Dimensional ;

DimensionalUnits_t DimensionalUnits =

H

MassUnits = Null ;
LengthUnits = Foot ;
TimeUnits = Null ;
TemperatureUnits = Null ;
AngleUnits = Null ;
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3
3
3

From Appendix A, the identifiers for x and y are CoordinateX and CoordinateY, respectively, and
both have a data type of real. The value of DataClass in CoordinateX and CoordinateY indicate
the data is dimensional, and DimensionalUnits specifies the appropriate units are feet. The
DimensionalExponents entity is absent from both CoordinateX and CoordinateY; the information
that = and y are lengths can be inferred from the data-name identifier conventions in Section A.1.

Note that FORTRAN multidimensional array indexing is used to store the data; this is reflected in
the FORTRAN:-like implied do-loops for x(i,j) and y(i,j).

Since the dimensional units for both x and y are the same, an alternate approach is to set the data
class and system of units using DataClass and DimensionalUnits at the GridCoordinates_t level,
and eliminate this information from each instance of DataArray_t.

GridCoordinates_t<2, [17,33]> GridCoordinates =
{{

DataClass_t DataClass = Dimensional ;

DimensionalUnits_t DimensionalUnits =

it
MassUnits = Null ;
LengthUnits = Foot ;
TimeUnits = Null ;
TemperatureUnits = Null ;
AngleUnits = Null ;
1}
DataArray_t<real, 2, [17,33]> CoordinateX =
{{
Data(real, 2, [17,33]) = ((x(i,j), i=1,17), j=1,33) ;
1}
DataArray_t<real, 2, [17,33]> CoordinateY =
{{
Data(real, 2, [17,33]) = ((y(i,j), i=1,17), j=1,33) ;
1
1

Since the DataClass and DimensionalUnits entities are not present in CoordinateX and Coor-
dinateY, the rules established in Section 5.2.1 dictate that DataClass and DimensionalUnits
specified at the GridCoordinates_t level be used to retrieve the information.
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Example 7-B: Cylindrical Coordinates for a 3-D Structured Grid

Cylindrical coordinates for a 3-D grid whose core size is 17 x 33 x 9. The grid contains a single
plane of rind on the minimum and maximum k faces. The coordinates are nondimensional.

! IndexDimension = 3
! VertexSize = [17,33,9]
GridCoordinates_t<3, [17,33,9]> GridCoordinates =

{{

Rind_t<3> Rind =
{{
int [6] RindPlanes = [0,0,0,0,1,1] ;
1}

! DataType = real
! IndexDimension = 3
! DataSize = VertexSize + [0,0,2] = [17,33,11]
DataArray_t<real, 3, [17,33,11]> CoordinateRadius =
{{
Data(real, 3, [17,33,11]) = (((r(i,j,k), i=1,17), j=1,33), k=0,10) ;

DataClass_t DataClass = NormalizedByUnknownDimensional ;

1}
DataArray_t<real, 3, [17,33,11]> CoordinateZ = {{ }} ;
DataArray_t<real, 3, [17,33,11]> CoordinateTheta = {{ }} ;

3

The value of RindPlanes specifies two rind planes on the minimum and maximum k faces. These
rind planes are reflected in the structure function DataSize which is equal to the number of core
vertices plus two in the k dimension. The value of DataSize is passed to the DataArray_t entities.
The value of DataClass indicates the data is nondimensional. Note that if DataClass is set as
NormalizedByUnknownDimensional at a higher level (CGNSBase_t or Zone_t), then it is not needed
here.

Note that the entities CoordinateZ and CoordinateTheta are abbreviated.

Example 7-C: Cartesian Coordinates for a 3-D Unstructured Grid

Cartesian grid coordinates for a 3-D unstructured zone where VertexSize is 15.

GridCoordinates_t<1, 15> GridCoordinates =

H

! DataType = real
! IndexDimension = 1
I DataSize = VertexSize = 15
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DataArray_t<real, 1, 15> CoordinateX

{{
Data(real, 1, 15) = (x(i), i=1,15) ;
1}

DataArray_t<real, 1, 15> CoordinateY =
{{
Data(real, 1, 15) = (y(i), i=1,15) ;
1}

DataArray_t<real, 1, 15> CoordinateZ =
{{
Data(real, 1, 15) = (z(i), i=1,15) ;
1

1}

7.3 Elements Structure Definition: Elements_t

The Elements_t data structure is required for unstructured zones, and contains the element con-
nectivity data, the element type, the element range, the parent elements data, and the number of
boundary elements.

Elements_t :=

{
List( Descriptor_t Descriptorl ... DescriptorN ) ; (o)
IndexRange_t ElementRange ; (r)
int ElementSizeBoundary ; (o/d)
ElementType_t ElementType ; (r)
DataArray_t<int, 1, ElementDataSize> ElementConnectivity ; (r)
DataArray_t<int, 2, [ElementSize, 4]> ParentData; (o)
List( UserDefinedData_t UserDefinedDatal ... UserDefinedDataN ) ; (o)
s

Notes

1. Default names for the Descriptor_t and UserDefinedData_t lists are as shown; users may
choose other legitimate names. Legitimate names must be unique within a given instance
of Elements_t and shall not include the names ElementConnectivity, ElementRange, or
ParentData.
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2. IndexRange_t, ElementType_t, and ElementConnectivity_t are the required fields within
the Elements_t structure.

ElementRange contains the index of the first and last elements defined in ElementConnectivity.
The elements are indexed with a global numbering system, starting at 1, for all element sections
under a given Zone_t data structure. They are also listed as a continuous list of element numbers
within any single element section. Therefore the number of elements in a section is:

ElementSize = ElementRange.end - ElementRange.start + 1

The element indices are used for the boundary condition and zone connectivity definition.

ElementSizeBoundary indicates if the elements are sorted, and how many boundary elements are
recorded. By default, ElementSizeBoundary is set to zero, indicating that the elements are not
sorted. If the elements are sorted, ElementSizeBoundary is set to the number of elements at the
boundary. Consequently:

ElementSizeInterior = ElementSize - ElementSizeBoundary
ElementType_t is an enumeration of the supported element types:

ElementType_t := Enumeration(
Null, NODE, BAR_2, BAR_3,
TRI_3, TRI_6, QUAD_4, QUAD_8, QUAD_9,
TETRA_4, TETRA_10, PYRA_5, PYRA_14,
PENTA_6, PENTA_15, PENTA_18,
HEXA_8, HEXA_20, HEXA_27, MIXED, NGON_n, UserDefined );

Section 3.3 illustrates the convention for element numbering.

For all element types except type MIXED, ElementConnectivity contains the list of nodes for each
element. If the elements are sorted, then it must first list the connectivity of the boundary elements,
then that of the interior elements.

ElementConnectivity = Nodel;, Node2;, ... NodeNy,
Nodely;, Node2;, ... NodelNs,,
Nodely, Node2y, ... Nodely

When the section ElementType is MIXED, the data array ElementConnectivity contains one extra
integer per element, to hold each individual element type:

ElementConnectivity = Etype;, Nodel;, Node2;, ... NodeNj,
Etypes, Nodel,, Node2;, ... NodeNj,
Etypeu, Nodely, Node2y, ... NodeNy
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ElementDataSize indicates the size (number of integers) of the array ElementConnectivity. For
all element types except type MIXED, the ElementDataSize is given by:

ElementDataSize = ElementSize * NPE[ElementType]

In the case of MIXED element section, ElementDataSize is given by:

end

ElementDataSize = Z (NPE[ElementType,] + 1)

n=start

NPE [ElementType] is a function returning the number of nodes for the given ElementType. For
example, NPE [HEXA_8]=8.

For face elements in 3D, or bar element in 2D, four more data may be saved for each element —
the corresponding parents’ element number, and the face position within these parent elements. At
the boundaries, the second parent is set to zero.

NGON_n is used to express a polygon of n nodes. In order to record the number of nodes of any
ngons, the ElementType must be set to NGON_n + Nnodes. For example, for an element type NGON_n
composed of 25 nodes, one would set the ElementType to NGON_n + 25.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

7.4 Elements Examples

This section contains two examples of elements definition in CGNS. In both cases, the unstructured
zone contains 15 tetrahedral and 10 hexahedral elements.

Example 7-D: Unstructured Elements, Separate Element Types

In this first example, the elements are written in two separate sections, one for the tetrahedral
elements and one for the hexahedral elements.

Zone_t UnstructuredZone =

{H

Elements_t TetraElements =
{H
IndexRange_t ElementRange = [1,15] ;
int ElementSizeBoundary = 10 ;

ElementType_t ElementType = TETRA_4 ;

DataArray_t<int, 1, NPE[TETRA_4] x15> ElementConnectivity =
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{H{
Data(int, 1, NPE[TETRA_4]x15) = (node(i,j), i=1,NPE[TETRA_4], j=1,15) ;

3

DataArray_t<int, 2, [15,4]> ParentData =
{
Data(int, 2, [15,4]) = (parentl(j),parent2(j),facel(j),face2(j), j=1,15) ;
1

1}

Elements_t HexaElements =
{{
IndexRange_t ElementRange

[16,25] ;

int ElementSizeBoundary = 0 ;

ElementType_t ElementType = HEXA_8 ;

DataArray_t<int, 1, NPE[HEXA_8]x10> ElementConnectivity =
{
Data(int, 1, NPE[HEXA_8]x10) = (node(i,j), i=1,NPE[HEXA_8], j=1,10) ;
I3

DataArray_t<int, 2, [10,4]> ParentData =
{{
Data(int, 2, [10,4]) = (parentl(j),parent2(j),facel(j),face2(j), j=1,10) ;
1
1
1

For elements 1 through 10, parent2 and face2 are set to zero since these are boundary elements.

Example 7-E: Unstructured Elements, Element Type MIXED

In this second example, the same unstructured zone described in Example 7-D is written in a single
element section of type MIXED (i.e., an unstructured grid composed of mixed elements).

Zone_t UnstructuredZone =

{H

Elements_t MixedElementsSection =

{{
IndexRange_t ElementRange = [1,25] ;

ElementType_t ElementType = MIXED ;

DataArray_t<int, 1, ElementDataSize> ElementConnectivity =

a8
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Data(int, 1, ElementDataSize) = (etype(j), (node(i,j),
i=1,NPE[etype(j)]1), j=1,25) ;

i3
DataArray_t<int, 2, [25,4]> ParentData =
H
Data(int, 2, [25,4]) = (parentl(j),parent2(j),facel(j),face2(j), j=1,25) ;
i3
3
i3

7.5 Flow Solution Structure Definition: FlowSolution_t

The flow solution within a given zone is described by the FlowSolution_t structure. This structure
contains a list for the data arrays of the individual flow-solution variables, as well as identifying the
grid location of the solution. It also provides a mechanism for identifying rind-point data included
within the data arrays.

FlowSolution_t< int IndexDimension, int VertexSize[IndexDimension],
int CellSize[IndexDimension] > :=

{

List( Descriptor_t Descriptorl ... DescriptorN ) ; (o)
GridLocation_t GridLocation ; (o/d)
Rind_t<IndexDimension> Rind ; (o/d)

List( DataArray_t<DataType, IndexDimension, DataSize[]>

DataArrayl ... DataArrayN ) ; (o)
DataClass_t DataClass ; (o)
DimensionalUnits_t DimensionalUnits ; (o)
List( UserDefinedData_t UserDefinedDatal ... UserDefinedDatalN ) ; (o)
}

Notes

1. Default names for the Descriptor_t, DataArray_t, and UserDefinedData_t lists are as
shown; users may choose other legitimate names. Legitimate names must be unique within a
given instance of FlowSolution_t and shall not include the names DataClass, Dimension-—
alUnits, GridLocation, or Rind.
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2. There are no required fields for FlowSolution_t. GridLocation has a default of Vertex if
absent. Rind also has a default if absent; the default is equivalent to having an instance of
Rind whose RindPlanes array contains all zeros (see Section 4.8).

3. The structure parameter DataType must be consistent with the data stored in the DataAr-
ray_t structure entities (see Section 5.1); DataType is real for all flow-solution identifiers
defined in Appendix A.

4. For unstructured zones: rind planes are not meaningful and should not be used; GridLoca-
tion options are limited to Vertex or CellCenter, meaning that solution data may only be
expressed at these locations; and the data arrays must follow the node ordering if GridLoca-
tion = Vertex, and the element ordering if GridLocation = CellCenter.

FlowSolution_t requires three structure parameters; IndexDimension identifies the dimensionality
of the grid-size arrays, and VertexSize and CellSize are the number of ‘core’ vertices and cells,
respectively, in each index direction. For unstructured zones, IndexDimension is always 1.

The flow solution data is stored in the list of DataArray_t entities; each DataArray_t structure
entity may contain a single component of the solution vector. Standardized data-name identifiers
for the flow-solution quantities are described in Appendix A. The field GridLocation specifies the
location of the solution data with respect to the grid; if absent, the data is assumed to coincide with
grid vertices (i.e. GridLocation = Vertex). All data within a given instance of FlowSolution_t
must reside at the same grid location.

Rind is an optional field for structured zones that indicates the number of rind planes included in
the data. Its purpose and function are identical to those described in Section 7.1. Note, however,
that the Rind in this structure is independent of the Rind contained in GridCoordinates_t. They
are not required to contain the same number of rind planes. Also, the location of any flow-solution
rind points is assumed to be consistent with the location of the ‘core’ flow solution points (e.g. if
GridLocation = CellCenter, rind points are assumed to be located at fictitious cell centers).

DataClass defines the default class for data contained in the DataArray_t entities. For dimensional
flow solution data, DimensionalUnits may be used to describe the system of units employed. If
present these two entities take precedence over the corresponding entities at higher levels of the
CGNS hierarchy. The rules for determining precedence of entities of this type are discussed in
Section 6.3.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

FUNCTION DataSizel[]:

return value: one-dimensional int array of length IndexDimension
dependencies: IndexDimension, VertexSize[], CellSize[], GridLocation, Rind

The function DataSize[] is the size of flow solution data arrays. If Rind is absent then DataSize
represents only the ‘core’ points; it will be the same as VertexSize or CellSize depending on
GridLocation. The definition of the function DataSize[] is as follows:
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if (Rind is absent) then

{

if (GridLocation = Vertex) or (GridLocation is absent)
{
DataSize[] = VertexSizel] ;
}

else if (GridLocation = CellCenter) then
{
DataSize[] = CellSizel[] ;
}

}

else if (Rind is present) then

{

if (GridLocation = Vertex) or (GridLocation is absent) then
{
DataSize[] = VertexSizel[]l + [a + b,...] ;
}

else if (GridLocation = CellCenter)
{
DataSize[] = CellSize[] + [a + b,...] ;
}

}

where RindPlanes = [a,b,...] (see Section 4.8 for the definition of RindPlanes).

7.6 Flow Solution Example

This section contains an example of the flow solution entity, including the designation of grid
location and rind planes and data-normalization mechanisms.

Example 7-F: Flow Solution

Conservation-equation variables (p, pu, pv and peg) for a 2-D grid of size 11 x 5. The flowfield is cell-
centered with two planes of rind data. The density, momentum and stagnation energy (peg) data is
nondimensionalized with respect to a freestream reference state whose quantities are dimensional.
The freestream density and pressure are used for normalization; these values are 1.226 kg/m? and
1.0132 x 10> N/m? (standard atmosphere conditions). The data-name identifier conventions for
the conservation-equation variables are Density, MomentumX, MomentumY and EnergyStagnation-
Density.

! IndexDimension = 2

! VertexSize = [11,5]

! CellSize = [10,4]

FlowSolution_t<2, [11,5], [10,4]> FlowExample =
{
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GridLocation_t GridLocation = CellCenter ;
Rind_t<2> Rind =

{{

int[4] RindPlanes = [2,2,2,2] ;

1}

DataClass_t DataClass = NormalizedByDimensional ;

DimensionalUnits_t DimensionalUnits =

{

MassUnits = Kilogram ;
LengthUnits = Meter ;
TimeUnits = Second ;
TemperatureUnits = Null ;
AngleUnits = Null ;
3

I DataType = real
! Dimension = 2
I DataSize = CellSize + [4,4] = [14,8]
DataArray_t<real, 2, [14,8]> Density =
{{
Data(real, 2, [14,8]) = ((rho(i,j), i=-1,12), j=-1,6) ;

DataConversion_t DataConversion =
{{
ConversionScale
ConversionOffset

3

1.226 ;
0 ;

DimensionalExponents_t DimensionalExponents =
i
MassExponent
LengthExponent = -3 ;
TimeExponent
TemperatureExponent
AngleExponent
s

s

+1

Il
o O O

DataArray_t<real, 2, [14,8]> MomentumX =
{{
Data(real, 2, [14,8]) = ((rho_u(i,j), i=-1,12), j=-1,6) ;
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DataConversion_t DataConversion =

{{
ConversionScale = 352.446 ;
ConversionOffset = 0 ;
1
1

DataArray_t<real, 2, [14,8]> MomentumY =
{{
Data(real, 2, [14,8]) = ((rho_v(i,j), i=-1,12), j=-1,6) ;

DataConversion_t DataConversion =

{{
ConversionScale = 352.446 ;
ConversionOffset = 0 ;
1
3

DataArray_t<real, 2, [14,8]> EnergyStagnationDensity =

{{
Data(real, 2, [14,8]) = ((rho_e0(i,j), i=-1,12), j=-1,6) ;

DataConversion_t DataConversion =

{{
ConversionScale = 1.0132e+05 ;
ConversionOffset = 0 ;
1
1

i3

The value of GridLocation indicates the data is at cell centers, and the value of RindPlanes
specifies two rind planes on each face of the zone. The resulting value of the structure function
DataSize is the number of cells plus four in each coordinate direction; this value is passed to each
of the DataArray_t entities.

Since the data are all nondimensional and normalized by dimensional reference quantities, this
information is stated in DataClass and DimensionalUnits at the FlowSolution_t level rather
than attaching the appropriate DataClass and DimensionalUnits to each DataArray_t entity. It
could possibly be at even higher levels in the heirarchy. The contents of DataConversion are in
each case the denominator of the normalization; this is po for density, |/pecpoo for momentum, and
Poo for stagnation energy. The dimensional exponents are specified for density. For all the other
data, the dimensional exponents are to be inferred from the data-name identifiers.

Note that no information is provided to identify the actual reference state or indicate that it is
freestream. This information is not needed for data manipulations involving renormalization or
changing the units of the converted raw data.
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This section defines structures for describing multizone interface connectivity for 1-to-1 abutting,
mismatched abutting, and overset type interfaces. The different types of zone interfaces are de-
scribed in Section 3.4. All interface connectivity information pertaining to a given zone is grouped
together in a ZoneGridConnectivity_t structure entity; this in turn is contained in a zone struc-
ture entity (see the definition of Zone_t in Section 6.2).

Before presentation of the structure definitions, a few design features require comment. All indices
used to describe interfaces are the dimensionality (IndexDimension) of the grid, even when they
are used to describe lower-dimensional zonal boundaries for abutting interfaces. The alternative
for structured zones that was not chosen is to use lower-dimensional indices for lower-dimensional
interfaces (e.g. for a 3-D grid, use two-dimensional indices for describing grid planes that are
interfaces). Both alternatives offer trade-offs. The lower-dimensional indices require cyclic notation
conventions and additional identification of face location; whereas, full-dimensional indices result
in one redundant index component when describing points along a grid plane. We decided that
full-dimensional indices would be more usable and less error prone in actual implementation.

A major consequence of this decision is that connectivity information for describing mismatched
abutting interfaces and overset interfaces can be merged into a single structure, GridConnectiv-
ity_t (see Section 8.4 below). In fact, this single structure type can be used to describe all zonal
interfaces.

A second design choice was to duplicate all 1-to-1 abutting interface information within the CGNS
database. It is possible to describe a given 1-to-1 interface with a single set of connectivity data.
In contrast, mismatched and overset interfaces require different connectivity information when the
roles of receiver and donor zones are interchanged. Therefore, a given mismatched or overset
interface requires two sets of connectivity data within the database. The decision to force two sets
of connectivity data (one contained in each of the Zone_t entities for the two adjacent zones) for
each 1-to-1 interface makes the connectivity structures for all interface types look and function
similarly. It also fits better with the zone-by-zone hierarchy chosen for the CGNS database. The
minor penalty in data duplication was deemed worth the advantages gained.

8.1 Zonal Connectivity Structure Definition: ZoneGridConnectivity_t

All multizone interface grid connectivity information pertaining to a given zone is contained in
the ZoneGridConnectivity_t structure. This includes abutting interfaces (1-to-1 and general
mismatched), overset-grid interfaces, and overset-grid holes.

ZoneGridConnectivity_t< int IndexDimension, int CellDimension > :

{
List( Descriptor_t Descriptorl ... DescriptorN ) ; (o)

List( GridConnectivityltol_t<IndexDimension>
GridConnectivityltoll ... GridConnectivityltolN ) ; (o)

69



Standard Interface Data Structures

List( GridConnectivity_t<IndexDimension, CellDimension>
GridConnectivityl ... GridConnectivityN ) ; (o)

List( OversetHoles_t<IndexDimension>

OversetHolesl ... OversetHolesN ) ; (o)
List( UserDefinedData_t UserDefinedDatal ... UserDefinedDatalN ) ; (o)
}
Notes

1. Default names for the Descriptor_t, GridConnectivityltol_t, GridConnectivity_t, Over—
setHoles_t, and UserDefinedData_t lists are as shown; users may choose other legitimate
names. users may choose other legitimate names. Legitimate names must be unique within
a given instance of ZoneGridConnectivity_t.

2. All lists within the ZoneGridConnectivity_t structure may be empty.

ZoneGridConnectivity_t requires two structure parameters, IndexDimension, which is passed
onto all connectivity substructures, and CellDimension, which is passed to GridConnectivity_t
only.

Connectivity information for 1-to-1 or matched multizone interfaces is contained in the GridCon-
nectivityltol_t structure. Abutting and overset connectivity is contained in the GridConnec-
tivity_t structure, and overset-grid holes are identified in the OversetHoles_t structure.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

8.2 1-to-1 Interface Connectivity Structure Definition: GridConnectivityltol_t

GridConnectivityltol_t only applies to structured zones interfacing with structured donors and
whose interface is a logically rectangular region. It contains connectivity information for a multizone
interface patch that is abutting with 1-to-1 matching between adjacent zone indices (also referred
to as CO connectivity). An interface patch is the subrange of the face of a zone that touches one
and only one other zone. This structure identifies the subrange of indices for the two adjacent zones
that make up the interface and gives an index transformation from one zone to the other. It also
identifies the name of the adjacent zone.

All the interface patches for a given zone are contained in the ZoneGridConnectivity_t entity
for that zone. If a face of a zone touches several other zones (say N), then N different instances
of the GridConnectivityltol_t structure must be included in the zone to describe each separate
interface patch. This convention requires that a single interface patch be described twice in the
database—once for each adjacent zone.

GridConnectivityltol_t< int IndexDimension > :=
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Eist( Descriptor_t Descriptorl ... DescriptorN ) ; (o)
int[IndexDimension] Transform ; (o/d)
IndexRange_t<IndexDimension> PointRange ; (r)
IndexRange_t<IndexDimension> PointRangeDonor ; (r)
Identifier(Zone_t) ZoneDonorName ; (r)
List( UserDefinedData_t UserDefinedDatal ... UserDefinedDataN ) ; (o)
int Ordinal ; (o)
}
Notes

Default names for the Descriptor_t and UserDefinedData_t lists are as shown; users may
choose other legitimate names. Legitimate names must be unique within a given instance of
GridConnectivityltol_t and shall not include the names PointRange, PointRangeDonor,
Transform, or Ordinal.

. If Transform is absent, then its default value is [+1,+2,+3].

ZoneDonorName must be equated to a zone identifier within the current CGNS database (i.e. it
must be equal to one of the Zone_t identifiers contained in the current CGNSBase_t entity).

. Beginning indices of PointRange and PointRangeDonor must coincide (i.e. must be the same

physical point); ending indices of PointRange and PointRangeDonor must also coincide.

. Elements of Transform must be signed integers in the range -IndexDimension, ..., +Index-

Dimension; element magnitudes may not be repeated. In 3-D allowed elements are 0, £1,
+2, +3.

PointRange contains the subrange of indices that makes up the interface patch in the current zone

(ie. t

hat Zone_t entity that contains the given instance of GridConnectivityitol_t). Point-

RangeDonor contains the interface patch subrange of indices for the adjacent zone (whose identifier
is given by ZoneDonorName). By convention the indices contained in PointRange and PointRange-
Donor refer to vertices.

Transform contains a short-hand notation for the transformation matrix describing the relation be-
tween indices of the two adjacent zones. The transformation matrix itself has rank IndexDimension
and contains elements +1, —1 and 0; it is orthonormal and its inverse is its transpose. The trans-
formation matrix (T) works as follows: if Index1 and Index2 are the indices of a given point on
the interface, where Index1 is in the current zone and Index2 is in the adjacent zone, then their
relationship is,

Index2 = T.(Indexl - Beginl) + Begin2

Index1

Transpose[T] . (Index2 - Begin2) + Beginl

71



Standard Interface Data Structures

where the ‘.’ notation indicates matrix-vector multiply. Beginl and End1 are the subrange indices
contained in PointRange, and Begin2 and End2 are the subrange indices contained in PointRange-
Donor.

The short-hand notation used in Transform is as follows: each element shows the image in the
adjacent zone’s face of a positive index increment in the current zone’s face. The first element
is the image of a positive increment in ¢; the second element is the image of an increment in j;
and the third (in 3-D) is the image of an increment in k on the current zone’s face. For 3-D, the
transformation matrix T is constructed from Transform = [4a, £b, £c] as follows:

sgn(a)del(a — 1) sgn(b)del(b—1) sgn(c)del(c—1)
T = | sgn(a)del(a —2) sgn(b)del(b—2) sgn(c)del(c—2) |,
sgn(a)del(a — 3) sgn(b)del(b—3) sgn(c)del(c— 3)

where,
_ [+, ifz>0 o _ [ 1, if abs(z) = abs(y)
sgn(z) = { -1, ifz<0 del(z —y) = {0, otherwise

For example, Transform = [—2, +3, +1] gives the transformation matrix,

0 0 +1
T=|-1 0 O
0 +1 0

For establishing relationships between adjacent and current zone indices lying on the interface itself,
one of the elements of Transform is superfluous since one component of both interface indices
remains constant. It is therefore acceptable to set that element of Transform to zero.

If the transformation matrix is used for continuation of computational coordinates into the adjacent
zone (e.g. to find the location of a rind point in the adjacent zone), then all elements of Transform
are needed. If the above mentioned superfluous element is set to zero, it can be easily regenerated
from PointRange and PointRangeDonor and the grid sizes of the two zones. This is done by
determining the faces represented by PointRange and PointRangeDonor (i.e. i-min, i-max, j-min,
etc.). If one is a minimum face and the other a maximum face, then the sign of the missing element
in Transform is ‘+’, and the value of the missing element in the transformation matrix (T) is +1.
If the faces are both minimums or are both maximums, the sign is ‘—’. Next, the position and
magnitude of the element in Transform, and hence the row and column in the transformation
matrix, is given by the combinations of ¢, j and k faces for the two. For example, if PointRange
represents a j-min or j-max face and PointRangeDonor represents an ¢-min or i-max face, then the
missing element’s position in Transform is 2 and its magnitude is 1 (i.e. Transform = [, =1, *]).

Note also that the transform matrix and the two index pairs overspecify the interface patch. For
example, End2 can be obtained from Transform, Beginl, End1l and Begin2.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

Ordinal is user-defined and has no restrictions on the values that it can contain. It is included for
backward compatibility to assist implementation of the CGNS system into applications whose 1/0O
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depends heavily on the numbering of zone interfaces. Since there are no restrictions on the values
contained in Ordinal (or that Ordinal is even provided), there is no guarantee that the interfaces
in an existing CGNS database will have sequential values from 1 to IV without holes or repetitions.
Use of Ordinal is discouraged and is on a user-beware basis.

8.3 1-to-1 Interface Connectivity Examples

This section contains two examples of structure entities for describing the connectivity for struc-
tured-zone 1-to-1 abutting multizone interfaces. Appendix B contains additional examples of 1-to-1
interfaces.

Example 8-A: 1-to-1 Abutting of Complete Faces

Two zones have the same orientation; zone 1 is 9x 17 x 11 and zone 2 is 9x 17x21. The k-max
face of zone 1 abuts the k-min face of zone 2. Contained in the structure entities of zone 1 is the
following interface structure:

GridConnectivityltol_t<3> Zonel/ZoneGridConnectivity/KMax =

i
int[3] Transform = [1,2,3]
IndexRange_t<3> PointRange

{{
int[3] Begin = [1,1,11] ;
int[3] End = [9,17,11] ;
1}
IndexRange_t<3> PointRangeDonor =
{{
int[3] Begin = [1,1,1] ;
int[3] End = [9,17,1] ;
1}
Identifier(Zone_t) ZoneDonorName = Zone2 ;
1}

Contained in the structure entities of zone 2 is the following:

GridConnectivityltol_t<3> Zone2/ZoneGridConnectivity/KMin =

{
int[3] Transform = [1,2,3] ;
IndexRange_t<3> PointRange =

i
int [3] Begin = [1,1,1] ;
int[3] End = [9,17,1] ;
IS
IndexRange_t<3> PointRangeDonor =
i

int [3] Begin = [1,1,11] ;
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int[3] End = [9,17,11] ;

1}
Identifier(Zone_t) ZoneDonorName = Zonel ;
1}

This example assumes zones 1 and 2 have the identifiers Zonel and Zone2, respectively.

Example 8-B: 1-to-1 Abutting, Complete Face to a Subset of a Face

: (1,9,1) ]
! .-® (177935) * <
: o | i
ku j/,’/)_ _______ ////b —————————————————
> 7,9.5
i (7.9.5) Zone 2
Zone 1 TxX9%x5H
17x9x7

Figure 3: Example Interface for 1-to-1 Connectivity

Figure 3 shows a more complex 1-to-1 abutting interface, where the entire j-max face of zone 2
coincides with a subset of the i-max face of zone 1. This situation would result in the following
connectivity structures:

GridConnectivityltol_t<3> Zonel/ZoneGridConnectivity/IMax =

{{
int[3] Transform = [-2,-1,-3] ;
IndexRange_t<3> PointRange =

{{
int[3] Begin = [17,3,1] ;
int[3] End = [17,9,5] ;
1
IndexRange_t<3> PointRangeDonor =
{{
int[3] Begin = [7,9,5] ;
int[3] End = [1,9,1] ;
1t
Identifier(Zone_t) ZoneDonorName = Zone2 ;
1

GridConnectivityltol_t<3> Zone2/ZoneGridConnectivity/JMax =
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{{
int[3] Transform = [-2,-1,-3] ;
IndexRange_t<3> PointRange =

{{
int[3] Begin = [1,9,1] ;
int[3] End = [7,9,5] ;
o
IndexRange_t<3> PointRangeDonor =
{{
int[3] Begin = [17,9,5] ;
int[3] End = [17,3,1] ;
1
Identifier(Zone_t) ZoneDonorName = Zonel ;
1

This example also assumes zones 1 and 2 have the identifiers Zonel and Zone2, respectively. Note
that the index transformation matrix for both this and the previous examples is symmetric; hence,
the value of Transform is identical for both members of the interface pair. In general this will not
always be the case.

8.4 General Interface Connectivity Structure Definition: GridConnectivity_t

GridConnectivity_t contains connectivity information for generalized multizone interfaces, and
may be used for any mix of structured and unstructured zones. Its purpose is to describe mis-
matched-abutting and overset interfaces, but can also be used for 1-to-1 abutting interfaces.

For abutting interfaces that are not 1-to-1, also referred to as patched or mismatched, an interface
patch is the subrange of the face of a zone that touches one and only one other zone. This
structure identifies the subrange of indices (or array of indices) that make up the interface and
gives their image in the adjacent (donor) zone. It also identifies the name of the adjacent zone.
If a given face of a zone touches several (say N) adjacent zones, then N different instances of
GridConnectivity_t are needed to describe all the interfaces. For a single abutting interface, two
instances of GridConnectivity_t are needed in the database — one for each adjacent zone.

For overset interfaces, this structure identifies the fringe points of a given zone that lie in one and
only one other zone. If the fringe points of a zone lie in several (say N) overlapping zones, then
N different instances of GridConnectivity_t are needed to describe the overlaps. It is possible
with overset grids that a single fringe point may actually lie in several overlapping zones (though in
typical usage, linkage to only one of the overlapping zones is kept). There is no restriction against
a given fringe point being contained within multiple instances of GridConnectivity_t; therefore,
this structure allows the description of a single fringe point lying in several overlapping zones.

GridConnectivityType_t := Enumeration(
Null,
Overset,
Abutting,
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GridConnectivity_t< int IndexDimension, int CellDimension >

Abuttingltol,
UserDefined ) ;

{

List( Descriptor_t Descriptorl ... DescriptorN ) ; (o)
GridConnectivityType_t GridConnectivityType ; (o/d)
GridLocation_t GridLocation ; (o/d)
IndexRange_t<IndexDimension> PointRange ; (o:r)
IndexArray_t<IndexDimension, PointListSize, int> PointList ; (r:o0)
IndexArray_t<IndexDimension, PointListSize, int> PointListDonor ; (o:1)
IndexArray_t<IndexDimension, PointListSize, int> CellListDonor ; (r:o0)
Identifier(Zone_t) ZoneDonorName ; (r)

DataArray_t <real, 2, [CellDimension, PointListSize]> InterpolantsDonor (r:o)

List( UserDefinedData_t UserDefinedDatal ... UserDefinedDataN ) ; (o)
int Ordinal ; (o)
}

Notes
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. Default names for the Descriptor_t and UserDefinedData_t lists are as shown; users may

choose other legitimate names. Legitimate names must be unique within a given instance
of GridConnectivity_t and shall not include the names CellListDonor, GridConnectiv-—
ityType, GridLocation, InterpolantsDonor, Ordinal, PointList, PointListDonor, or
PointRange.

ZoneDonorName must be equated to a zone identifier within the current CGNS database (i.e. it
must be equal to one of the Zone_t identifiers contained in the current CGNSBase_t entity).
If GridConnectivityType is absent, then its default value is Overset.

If GridLocation is absent, then its default value is Vertex.

One of PointRange and PointList must be specified, but not both.

If PointRange is specified, then an index ordering convention is needed to map receiver-zone
grid points to donor-zone grid points. FORTRAN multidimensional array ordering is used.

If GridConnectivityType is Abuttingltol or Abutting, then PointRange or PointList
must define points associated with a face subrange (if the zone is structured, all points must
be in a single computational grid plane); the donor-zone grid locations defined by PointList-
Donor or CellListDonor must also be associated with a face subrange.

. Either PointListDonor alone, or CellListDonor plus InterpolantsDonor, must be used.

The use of PointListDonor is restricted to Abuttingltol, whereas CellListDonor plus



8 Multizone Interface Connectivity

InterpolantsDonor can be used for any interface type.

The type of multizone interface connectivity may be Overset, Abutting, or Abuttingltol. Over-—
set refers to zones that overlap; for a 3-D configuration the overlap is a 3-D region. Abutting refers
to zones that abut or touch, but do not overlap (other than the vertices and faces that make up
the interface). Abuttingltol is a special case of abutting interfaces where grid lines are continuous
across the interface and all vertices on the interface are shared by the two adjacent zones. See
Section 3.4 for a description of the three different types of interfaces.

The interface grid points within the receiver zone may be specified by PointRange if they constitute
a logically rectangular region (e.g. an abutting interface where an entire face of the receiver zone
abuts with a part of a face of the donor zone). In all other cases, PointList should be used to list
the receiver-zone grid points making up the interface. For a structured-to-structured interface, all
indices in PointRange or PointList should have one index element in common (see note 7).

GridLocation identifies the location of indices within the receiver zone described by PointRange or
PointList; it also identifies the location of indices defined by PointListDonor in the donor zone.
This allows the flexibility to specify grid locations other than vertices. GridLocation does not apply
to CellListDonor or InterpolantsDonor. The CellListDonor is always an index or indices that
define a particular cell or element, while the InterpolantsDonor defines an interpolation value
relative to the cell/element vertices.

PointListDonor may only be used when the interface is Abuttingltol. It contains the images
of all the receiver-zone interface points in the donor zone. If the zone is structured, all indices in
PointListDonor should have one index element in common.

For mismatched or overset interfaces, the zone connectivity is defined using the combination of
CellListDonor and InterpolantsDonor. CellListDonor contains the list of donor cells in which
each node of the receiver zone can be located. InterpolantsDonor contains the interpolation
factors to locate the receiver nodes in the donor cells. InterpolantsDonor may be thought of as
bi- or tri-linear interpolants (depending on CellDimension) in the cell of the donor zone.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

Ordinal is user-defined and has no restrictions on the values that it can contain. It is included for
backward compatibility to assist implementation of the CGNS system into applications whose 1/O
depends heavily on the numbering of zone interfaces. Since there are no restrictions on the values
contained in Ordinal (or that Ordinal is even provided), there is no guarantee that the interfaces
for a given zone in an existing CGNS database will have sequential values from 1 to N without
holes or repetitions. Use of Ordinal is discouraged and is on a user-beware basis.

FUNCTION PointListSize:

return value: int
dependencies: PointRange, PointList

PointListDonor, CellListDonor, and InterpolantsDonor require the function PointListSize,
to identify the length of the array. If PointRange is specified by GridConnectivity_t, then
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PointListSize is obtained from the number of grid points (inclusive) between the beginning
and ending indices of PointRange. If PointList is specified by by GridConnectivity_t, then
PointListSize is actually a user input during creation of the database; it is the length of the array
PointList whose elements are also user inputs (by ‘user’ we mean the application code that is
generating the CGNS database).

By definition, the PointList and PointListDonor arrays have the same size, and this size should
be stored along with the arrays in their respective IndexArray_t structures (this is done in the ADF
implementation). PointListSize was chosen to be a structure function, rather than a separate
element of GridConnectivity_t for the following reasons: first, it is redundant if PointRange is
specified; and second, it leads to redundant storage if PointList is specified, since the value of
PointListSize is also stored within the PointList structure.

This situation has somewhat of a precedent within the SIDS definitions. The structure Descrip-
tor_t contains a string of unspecified length. Yet in actual implementation, the (string) length is
a function of the descriptor string itself and should be stored along with the string.

8.5 Overset Grid Holes Structure Definition: OversetHoles_t

Grid connectivity for overset grids must also include ‘holes’ within zones, where any solution states
are ignored or ‘turned off’, because they are solved for in some other overlapping zone. The
structure OversetHoles_t specifies those points within a given zone that make up a hole (or holes),
and applies to both structured and unstructured zones. Grid points specified in this structure are
equivalent to those with IBLANK=0 in the PLOT3D format.

OversetHoles_t< int IndexDimension > :=

{
List( Descriptor_t Descriptorl ... DescriptorN ) ; (o)
GridLocation_t GridLocation ; (o/d)

List( IndexRange_t<IndexDimension>

PointRange, PointRange2 ... PointRangeN ) ; (o:r)
IndexArray_t<IndexDimension, PointListSize, int> PointLlist ; (r:0)
List( UserDefinedData_t UserDefinedDatal ... UserDefinedDataN ) ; (o)
+

Notes

1. Default names for the Descriptor_t, IndexRange_t, and UserDefinedData_t lists are as
shown; users may choose other legitimate names. Legitimate names must be unique within
a given instance of OversetHoles_t and shall not include the names GridLocation or
Pointlist.

2. If GridLocation is absent, then its default value is Vertex.
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3. One of PointRange and PointList must be specified, but not both.

The location of grid indices specified in PointList and the PointRange list is given by GridLoca-
tion.

The grid points making up a hole within a zone may be specified by PointRange if they constitute
a logically rectangular region. If the hole points constitute a (small) set of possibly overlapping
logically rectangular regions, then they may be specified by the list PointRange, PointRange?2,
etc. The more general alternate is to use PointList to list all grid points making up the hole(s)
within a zone. Note that using multiple PointRange specifications may result in a given hole being
specified more than once.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

FUNCTION PointListSize:

return value: int
dependencies: PointList

OversetHoles_t requires one structure function, PointListSize, to identify the length of the
PointList array. PointListSize is a user input (see discussion on function PointListSize in
previous section).
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9 Boundary Conditions

This section is an attempt to unify boundary-condition specifications within Navier-Stokes codes.
The structures and conventions developed are a compromise between simplicity and generality. It
is imperative that they be easy to use initially, but that they are general enough to provide future
flexibility and extensibility.

This section may be somewhat daunting initially. It is suggested that the reader refer to the
several, well-explained examples presented in Section 9.9 during study of the following sections to
help resolve any questions and confusions that might arise.

The difficulty with boundary conditions is that there is such a wide variety used, and even a single
boundary-condition equation is often implemented differently in different codes. Some boundary
conditions, such as a symmetry plane, are fairly well defined. Other boundary conditions are
much looser in their definition and implementation. An inflow boundary is a good example. It is
generally accepted how many solution quantities should be specified at an inflow boundary (from
mathematical well-posedness arguments), but what those quantities are will change with the class
of flow problems (e.g. internal flows vs. external flows), and they will also change from code to code.

An additional difficulty for CFD analysis is that in some situations different boundary-condition
equations are applied depending on local flow conditions. Any boundary where the flow can change
from inflow to outflow or supersonic to subsonic is a candidate for flow-dependent boundary-
condition equations.

These difficulties have molded the design of our boundary-condition specification structures and
conventions. We define boundary-condition types (Section 9.6) that establish the equations to be
enforced. However, for those more loosely defined boundary conditions, such as inflow/outflow,
the boundary-condition type merely establishes general guidelines on the equations to be imposed.
Augmenting (and superseding) the information provided by the boundary-condition type is precisely
defined boundary-condition solution data. We rely on our conventions for data-name identifiers
to identify the exact quantities involved in the boundary conditions; these data-name identifier
conventions are presented in Appendix A.

One flexibility that is provided by this approach is that boundary-condition information can easily
be built during the course of an analysis. For example, during grid-generation phases minimal
information (e.g. the boundary-condition type) may be given. Then prior to running of the flow
solver, more specific boundary-condition information, such as Dirichlet or Neumann data, may be
added to the database.

An additional flexibility provided by the structures of this section is that both uniform and non-
uniform boundary-condition data can be described within the same framework.

We realize that most current codes allow little or no flexibility in choosing solution quantities to
specify for a given boundary-condition type. We also realize the coding effort involved with checking
for consistency between I/0 specifications and internal boundary-condition routines. To make these
boundary-condition structures more palatable initially, we adopt the convention that if no solution
quantities are specified for a given boundary-condition type, then the code is free to enforce any
appropriate boundary condition (see Section 9.8).

Currently, there are no boundary-condition structures defined for abutting or overset interfaces,
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unless they involve cases of symmetry or degeneracy. There is also no separate boundary-condition
structure for periodic boundary conditions (i.e. when a zone interfaces with itself).

In the sections to follow, the definitions of boundary-condition structures are first presented in Sec-
tion 9.1 through Section 9.5. Boundary-condition types are then discussed in detail in Section 9.6,
including a description of the boundary-condition equations to be enforced for each type; this sec-
tion also describes the distinction between boundary-condition types that impose a set of equations
regardless of local flow conditions and those that impose different sets of boundary-condition equa-
tions depending on the local flow solution. The rules for matching boundary-condition types and
the appropriate sets of boundary-condition equations are next discussed in Section 9.7. Details of
specifying data to be imposed in boundary-condition equations are provided in Section 9.8. Finally,
Section 9.9 presents several examples of boundary conditions.

9.1 Boundary Condition Structures Overview

Prior to presenting the detailed boundary condition structures, we give a brief overview of the
hierarchy used to describe boundary conditions.

Boundary conditions are classified as either fixed or flow-dependent. Fixed boundary conditions
enforce a given set of boundary-condition equations regardless of flow conditions; whereas, flow-
dependent boundary conditions enforce different sets of boundary-condition equations depending
on local flow conditions. We incorporate both fixed and flow-dependent boundary conditions into
a uniform framework. This allows all boundary conditions to be described in a similar manner.
We consider this functionally superior than separately treating fixed and flow-dependent bound-
ary conditions, even though the latter allows a simpler description mechanism for fixed boundary
conditions. The current organization also makes sense considering the fact that flow-dependent
boundary conditions are composed of multiple sets of fixed boundary conditions.

Figure 4 depicts the hierarchy used for prescribing a single boundary condition. Each boundary
condition includes a type that describes the general equations to enforce, a patch specification, and
a collection of data sets. The minimum required information for any boundary condition is the
patch specification and the boundary-condition type (indicated by “BC type (compound)” in the
figure). This minimum information is similar to that used in many existing flow solvers.

Generality in prescribing equations to enforce and their associated boundary-condition data is
provided in the optional data sets. Each data set contains all boundary condition data required
for a given fixed or simple boundary condition. Each data set is also tagged with a boundary-
condition type. For fixed boundary conditions, the hierarchical tree contains a single data set, and
the two boundary-condition types shown in Figure 4 are identical. Flow-dependent or compound
boundary conditions contain multiple data sets, each to be applied separately depending on local
flow conditions. The compound boundary-condition type describes the general flow-dependent
boundary conditions, and each data set contains associated simple boundary-condition types. For
example, a farfield boundary condition would contain four data sets, where each applies to the
different combinations of subsonic and supersonic inflow and outflow. Boundary-condition types
are described in Section 9.6 and Section 9.7.

Within a single data set, boundary condition data is grouped by equation type into Dirichlet and
Neumann data. The lower leaves of Figure 4 show data for generic flow-solution quantities o and
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Figure 4: Hierarchy for Boundary Condition Structures

08 to be applied in Dirichlet conditions, and data for v and § to be applied in Neumann boundary
conditions. DataArray_t entities are employed to store these data and to identify the specific flow
variables they are associated with.

In situations where the data sets (or any information contained therein) are absent from a given
boundary-condition hierarchy, flow solvers are free to impose any appropriate boundary conditions.
Although not pictured in Figure 4, it is also possible to specify the reference state from which the
flow solver should extract the boundary-condition data.

9.2 Zonal Boundary Condition Structure Definition: ZoneBC_t

All boundary-condition information pertaining to a given zone is contained in the ZoneBC_t struc-

ture.

ZoneBC_t< int IndexDimension, int PhysicalDimension > :

{

List( Descriptor_t Descriptorl
List( BC_t<IndexDimension, int PhysicalDimension> BC1

ReferenceState_t ReferenceState

DataClass_t DataClass ;

b

. DescriptorN ) ;

DimensionalUnits_t DimensionalUnits ;

. BCN ) ;

(o)

(o)

(o)

(o)

(o)
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List( UserDefinedData_t UserDefinedDatal ... UserDefinedDataN ) ; (o)
}

Notes

1. Default names for the Descriptor_t, BC_t, and UserDefinedData_t lists are as shown;
users may choose other legitimate names. Legitimate names must be unique within a given
instance of ZoneBC_t and shall not include the names DataClass, DimensionalUnits, or
ReferenceState.

2. All lists within a ZoneBC_t structure entity may be empty.

ZoneBC_t requires two structure parameters, IndexDimension and PhysicalDimension, which are
passed onto all BC_t substructures.

Boundary-condition information for a single patch is contained in the BC_t structure. All boundary-
condition information pertaining to a given zone is contained in the list of BC_t structure entities. If
a zone contains N boundary-condition patches, then IV separate instances of BC_t must be provided
in the ZoneBC_t entity for the zone.

Reference data applicable to all boundary conditions of a zone is contained in the ReferenceState
structure. DataClass defines the zonal default for the class of data contained in the boundary
conditions of a zone. If the boundary conditions contain dimensional data, DimensionalUnits
may be used to describe the system of dimensional units employed. If present, these three entities
take precedence of all corresponding entities at higher levels of the hierarchy. These precedence
rules are further discussed in Section 6.3.

Reference-state data is useful for situations where boundary-condition data is not provided, and
flow solvers are free to enforce any appropriate boundary condition equations. The presense of
ReferenceState at this level or below specifies the appropriate flow conditions from which the
flow solver should extract its boundary-condition data. For example, a engine nozzle exit bound-
ary condition usually imposes a stagnation pressure (or some other stagnation quantity) differ-
ent from freestream. The nozzle-exit stagnation quantities could be specified in an instance of
ReferenceState at this level or below in lieu of providing explicit Dirichlet or Neumann data (see
Section 9.8).

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

9.3 Boundary Condition Structure Definition: BC_t

BC_t contains boundary-condition information for a single BC surface patch of a zone. A BC patch
is the subrange of the face of a zone where a given boundary condition is applied.

The structure contains a boundary-condition type, as well as one or more sets of boundary-condition
data that are used to define the boundary-condition equations to be enforced on the BC patch.
For most boundary conditions, a single data set is all that is needed. The structure also contains
information describing the normal vector to the BC surface patch.
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BC_t< int IndexDimension, int PhysicalDimension > :=

Eist( Descriptor_t Descriptorl ... DescriptorN ) ; (o)
BCType_t BCType ; (r)
GridLocation_t GridLocation ; (o/d)
IndexRange_t<IndexDimension> PointRange ; (o:r)
IndexArray_t<IndexDimension, ListLength, int> PointList ; (r:o0)
int [IndexDimension] InwardNormallIndex ; (o)
IndexArray_t<PhysicalDimension, ListLength, real> InwardNormalList ; (o)
List( BCDataSet_t<ListLength> BCDataSetl ... BCDataSetN ) ; (o)
FamilyName_t FamilyName ; (o)
ReferenceState_t ReferenceState ; (o)
DataClass_t DataClass ; (o)
DimensionalUnits_t DimensionalUnits ; (o)
List( UserDefinedData_t UserDefinedDatal ... UserDefinedDataN ) ; (o)
int Ordinal ; (o)
+
Notes

1.

Default names for the Descriptor_t, BCDataSet_t, and UserDefinedData_t lists are as
shown; users may choose other legitimate names. Legitimate names must be unique within
a given instance of BC_t and shall not include the names DataClass, DimensionalUnits,
FamilyName, GridLocation, InwardNormalIndex, InwardNormallList, Ordinal, PointList,
PointRange or ReferenceState.

. GridLocation may be set to Vertex, IFaceCenter, JFaceCenter, KFaceCenter, or FaceCen-—

ter, indicating that PointList or PointRange refer to vertices or cell faces. If GridLocation
is absent, then its default value is Vertex.

When GridLocation is set to Vertex, then PointList or PointRange refer to node indices,
for both structured and unstructured grids. When GridLocation is set to FaceCenter,
then PointList or PointRange refer to face elements. Face elements are indexed using
different methods depending if the zone is structured or unstructured. For a structured zone,
face elements are indexed using the minimum of the connecting vertex indices, as described
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in Section 3.2. For an unstructured zone, face elements are indexed using their element
numbering, as defined in the Elements_t data structures.

. One of PointRange and PointList must be specified, but not both. They must describe a

face subrange. PointRange and PointList refer to either vertices or cell faces, depending on
whether GridLocation is set to Vertex or FaceCenter.

. InwardNormalIndex is only an option for structured grids. For unstructured grid boundaries,

it should not be used. InwardNormalIndex may have only one nonzero element, whose sign
indicates the computational-coordinate direction of the BC patch normal; this normal points
into the interior of the zone.

. InwardNormalList contains a list of vectors normal to the BC patch pointing into the interior

of the zone. It is a function of PhysicalDimension and ListLength. The vectors are located
at the vertices of the BC patch when GridLocation is set to Vertex. For face center data
(GridLocation = FaceCenter), the vectors are located at the cell-face midpoints. The vectors
are not required to have unit magnitude.

. If PointRange and InwardNormalList are specified, then an ordering convention is needed

for indices on the BC patch. An ordering convention is also needed if PointRange is specified
and local data is present in the BCDataSet_t substructures. FORTRAN multidimensional
array ordering is used.

BCType specifies the boundary-condition type, which gives general information on the boundary-
condition equations to be enforced. BCType_t is defined in Section 9.6 along with the meanings of
all the BCType values.

The BC patch grid points may be specified by PointRange if they constitute a logically rectangular
region. In all other cases, PointList should be used to list the vertices or cell faces making up the
BC patch.

Some boundary conditions require a normal direction to be specified in order to be properly im-
posed. For structured zones a computational-coordinate normal can be derived from PointRange
or PointList by examining redundant index components. Alternatively, for structured zones this
information can be provided directly by InwardNormalIndex. From Note 4, this vector points
into the zone and can have only one non-zero element. For exterior faces of a zone in 3-D,
InwardNormalIndex should take the following values:

Face InwardNormalIndex Face InwardNormalIndex
i-min [+1,0,0] i-max [—1,0,0]
j-min [0,+1,0] j-max [0, —1,0]
k-min [0,0,+1] k-max [0,0, —1]

The physical-space normal vectors of the BC patch may be described by InwardNormallist; these
are located at vertices or cell faces, consistent with PointRange, PointList, and GridLocation.
InwardNormallist is listed as an optional field because it is not always needed to enforce boundary
conditions, and the physical-space normals of a BC patch can usually be constructed from the grid.
However, there are some situations, such as grid-coordinate singularity lines, where InwardNor-
malList becomes a required field, because it cannot be generated from other information.
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The BC_t structure provides for a list of boundary-condition data sets, described in the next section.
In general, the proper BCDataSet_t instance to impose on the BC patch is determined by the BCType
association table (Table 4 on p. 95). The mechanics of determining the proper data set to impose
is described in Section 9.7.

For a few boundary conditions, such as a symmetry plane or polar singularity, the value of BCType
completely describes the equations to impose, and no instances of BCDataSet_t are needed. For
‘simple’ boundary conditions, where a single set of Dirichlet and/or Neumann data is applied,
a single BCDataSet_t will likely appear (although this is not a requirement). For ‘compound’
boundary conditions, where the equations to impose are dependent on local flow conditions, several
instances of BCDataSet_t will likely appear; the procedure for choosing the proper data set is more
complex as described in Section 9.7.

FamilyName identifies the family to which the boundary belongs. Family names link the mesh
boundaries to the CAD surfaces. (See Section 12.6.) Boundary conditions may also be defined
directly on families. In this case, the BCType must be FamilySpecified. If, under a BC_t structure,
both FamilyName_t and BCType_t are present, and the BCType is not FamilySpecified, then the
BCType which is specified takes precedence over any BCType which might be stored in a FamilyBC_t
structure under the specified Family_t.

Reference data applicable to the boundary conditions of a BC patch is contained in the Refer-
enceState structure. DataClass defines the default for the class of data contained in the boundary
conditions. If the boundary conditions contain dimensional data, DimensionalUnits may be used
to describe the system of dimensional units employed. If present, these three entities take prece-
dence of all corresponding entities at higher levels of the hierarchy. These precedence rules are
further discussed in Section 6.3.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

Ordinal is user-defined and has no restrictions on the values that it can contain. It is included
for backward compatibility to assist implementation of the CGNS system into applications whose
I/0O depends heavily on the numbering of BC patches. Since there are no restrictions on the values
contained in Ordinal (or that Ordinal is even provided), there is no guarantee that the BC patches
for a given zone in an existing CGNS database will have sequential values from 1 to N without
holes or repetitions. Use of Ordinal is discouraged and is on a user-beware basis.

FUNCTION ListLength:

return value: int
dependencies: PointRange, PointList

BC_t requires the structure function ListLength, which is the number of vertices or cell faces making
up the BC patch. If PointRange is specified, then ListLength is obtained from the number of points
(inclusive) between the beginning and ending indices of PointRange. If PointList is specified, then
ListLength is the number of indices in the list of points. In this situation, ListLength becomes
a user input along with the indices of the list PointList. By ‘user’ we mean the application code
that is generating the CGNS database.
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ListLength is also the number of elements in the list InwardNormallist and is passed into the
BCDataSet_t substructures, where it is used to determine the length of BC data arrays. Note that
syntactically PointList and InwardNormallList must have the same number of elements.

9.4 Boundary Condition Data Set Structure Definition: BCDataSet_t
BCDataSet_t contains Dirichlet and Neumann data for a single set of boundary-condition equations.

Its intended use is for simple boundary-condition types, where the equations imposed do not depend
on local flow conditions.

BCDataSet_t< int ListLength > :=

Eist( Descriptor_t Descriptorl ... DescriptorN ) ; (o)
BCTypeSimple_t BCTypeSimple ; (r)
BCData_t<ListLength> DirichletData ; (o)
BCData_t<ListLength> NeumannData ; (o)
ReferenceState_t ReferenceState ; (o)
DataClass_t DataClass ; (o)
DimensionalUnits_t DimensionalUnits ; (o)
List( UserDefinedData_t UserDefinedDatal ... UserDefinedDataN ) ; (o)
+
Notes

1. Default names for the Descriptor_t and UserDefinedData_t lists are as shown; users may
choose other legitimate names. Legitimate names must be unique within a given instance of
BCDataSet_t and shall not include the names DataClass, DimensionalUnits, Dirichlet-
Data, NeumannData or ReferenceState.

2. BCTypeSimple is the only required field. All other fields are optional and the Descriptor_t
list may be empty.

BCDataSet_t requires the structure parameter ListLength, which is used to control the length of
data arrays in the Dirichlet and Neumann substructures for data that is defined at vertices or face
centers of the BC patch.

BCTypeSimple specifies the boundary-condition type, which gives general information on the bound-
ary-condition equations to be enforced. BCTypeSimple_t is defined in Section 9.6 along with the
meanings of all the BCTypeSimple values. BCTypeSimple is also used for matching boundary
condition data sets as discussed in Section 9.7.
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GridLocation is defined under BC_t, and specifies the location of local data arrays (if any) provided
in DirichletData and NeumannData.

Boundary-condition data is separated by equation type into Dirichlet and Neumann conditions.
Dirichlet boundary conditions impose the value of the given variables, whereas Neumann boundary
conditions impose the normal derivative of the given variables. The mechanics of specifying Dirichlet
and Neumann data for boundary conditions is covered in Section 9.8.

The substructures DirichletData and NeumannData contain boundary-condition data which may
be constant over the BC patch or defined locally at each vertex or cell face of the patch. By design
of BCDataSet_t, local boundary-condition data may be defined either at vertices or boundary face
centers; this is governed by the value of GridLocation under BC_t. Rather than pass this location
information into the DirichletData and NeumannData substructures, the total length of any local
data arrays is instead passed using the ListLength structure function.

Reference quantities applicable to the set of boundary-condition data are contained in the Refer-—
enceState structure. DataClass defines the default for the class of data contained in the boundary-
condition data. If the boundary conditions contain dimensional data, DimensionalUnits may be
used to describe the system of dimensional units employed. If present, these three entities take
precedence of all corresponding entities at higher levels of the hierarchy. These precedence rules
are further discussed in Section 6.3.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

9.5 Boundary Condition Data Structure Definition: BCData_t

BCData_t contains a list of variables and associated data for boundary-condition specification. Each
variable may be given as global data (i.e. a scalar) or local data defined at each grid point of the BC
patch. By convention all data specified in a given instance of BCData_t is to be used in the same
type of boundary-condition equation. For example, the use of separate BCData_t substructures for
Dirichlet and Neumann equations in the BCDataSet_t structure of the previous section.

BCData_t< int ListLength > :=

{
List( Descriptor_t Descriptorl ... DescriptorN ) ; (o)

List( DataArray_t<DataType, 1, 1>
DataGloball ... DataGlobalN ) ; (o)

List( DataArray_t<DataType, 1, ListLength>

Datalocall ... DatalocalN ) ; (o)
DataClass_t DataClass ; (o)
DimensionalUnits_t DimensionalUnits ; (o)
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List( UserDefinedData_t UserDefinedDatal ... UserDefinedDataN ) ; (o)
s

Notes

1. Default names for the Descriptor_t, DataArray_t, and UserDefinedData_t lists are as
shown; users may choose other legitimate names. Legitimate names must be unique within a
given instance of BCData_t and shall not include the names DataClass or DimensionalUnits.

2. There are no required elements; all three lists may be empty.

This structure definition shows separate lists for global verses local data. The global data is es-
sentially scalars, while the local data variables have size determined by the structure parame-
ter ListLength. For DataArray_t entities with standardized data-name identifiers listed in Ap-
pendix A, DataType is determined by convention. For user-defined variables, DataType is a user
input.

Two important points need to be mentioned regarding this structure definition. First, this definition
allows a given instance of BCData_t to have a mixture of global and local data. For example,
if a user specifies Dirichlet data that has a uniform stagnation pressure but has a non-uniform
velocity profile, this structure allows the user to describe the stagnation pressure by a scalar in the
DataGlobal list and the velocity by an array in the DataLocal list. Second, the only distinction
between the lists (aside from default names, which will be seldom used) is the parameters passed
into the DataArray_t structure. Therefore, in actual implementation of this BCData_t structure it
may not be possible to distinguish between members of the global and local lists without querying
inside the DataArray_t substructures. Straightforward mapping onto the ADF database will not
provide any distinctions between the members of the two lists. This hopefully will not cause any
problems.

DataClass defines the default for the class of data contained in the boundary-condition data. If the
boundary-condition data is dimensional, DimensionalUnits may be used to describe the system
of dimensional units employed. If present, these two entities take precedence of all corresponding
entities at higher levels of the hierarchy. These precedence rules are further discussed in Section 6.3.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

9.6 Boundary Condition Type Structure Definition: BCType_t
BCType_t is an enumeration type that identifies the boundary-condition equations to be enforced

at a given boundary location. BCType_t is a superset of two enumeration types, BCTypeSimple_t
and BCTypeCompound_t.

BCTypeSimple_t := Enumeration(
Null, BCGeneral, BCDirichlet, BCNeumann, BCExtrapolate, BCWallInviscid,
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BCWallViscousHeatFlux, BCWallViscousIsothermal, BCWallViscous, BCWall,
BCInflowSubsonic, BCInflowSupersonic, BCOutflowSubsonic, BCOutflowSupersonic,
BCTunnelInflow, BCTunnelOutflow, BCDegenerateline, BCDegeneratePoint,
BCSymmetryPlane, BCSymmetryPolar, BCAxisymmetricWedge, FamilySpecified,
UserDefined ) ;

BCTypeCompound_t := Enumeration(
Null, BCInflow, BCOutflow, BCFarfield, UserDefined ) ;

Any member of BCTypeSimple_t or BCTypeCompound_t is also a member of BCType_t. Simple
boundary-condition types are described by BCTypeSimple_t and compound types by BCType-
Compound_t. Some members of BCType_t completely identify the equations to impose, while other
give a general description of the class of boundary-condition equations to impose. The specific
boundary-condition equations to enforce for each value of BCType_t are listed in Table 2 and Ta-
ble 3.

The subdivision of BCType_t is based on function. For simple boundary conditions, the equations
and data imposed are fixed; whereas, for compound boundary conditions different sets of equations
are imposed depending on local flow conditions at the boundary. This distinction requires additional
rules for dealing with simple and compound boundary-condition types. These rules are discussed
in Section 9.7.

For the inflow/outflow boundary-condition descriptions, 3-D inviscid compressible flow is assumed;
the 2-D equivalent should be obvious. These same boundary conditions are typically used for
viscous cases also. This ‘3-D Euler’ assumption will be noted wherever used.

In the following tables, @ is the solution vector, ¢ is the velocity vector whose magnitude is ¢, the
unit normal to the boundary is 7, and 9()/0n = n-V is differentiation normal to the boundary.

Table 2: Simple Boundary Condition Types

BCType_1.: or . Boundary Condition Description
BCTypeSimple_t Identifier

BCGeneral Arbitrary conditions on @ or 9Q/on
BCDirichlet Dirichlet condition on @ vector
BCNeumann Neumann condition on 0Q/dn
BCExtrapolate Extrapolate (Q from interior
BCWallInviscid Inviscid (slip) wall

e normal velocity specified (default: ¢-n = 0)

BCWallViscousHeatFlux Viscous no-slip wall with heat flux
e velocity Dirichlet (default: ¢ = 0)
e temperature Neumann (default: adiabatic, 97'/0n = 0)

Continued on next page

91



Standard Interface Data Structures

Table 2: Simple Boundary Condition Types (Continued)

BCType_t or

Boundary Condition Description
BCTypeSimple_t Identifier Y P

BCWallViscousIsothermal Viscous no-slip, isothermal wall
e velocity Dirichlet (default: ¢ = 0)
e temperature Dirichlet

BCWallViscous Viscous no-slip wall; special cases are
BCWallViscousHeatFlux and BCWallViscousIsothermal
e velocity Dirichlet (default: ¢ = 0)
e Dirichlet or Neumann on temperature

BCWall General wall condition; special cases are BCWallInviscid,
BCWallViscous, BCWallViscousHeatFlux and
BCWallViscousIsothermal

BCInflowSubsonic Inflow with subsonic normal velocity
e specify 4; extrapolate 1 (3-D Euler)

BCInflowSupersonic Inflow with supersonic normal velocity
e specify 5; extrapolate 0 (3-D Euler)
Same as BCDirichlet

BCOutflowSubsonic Outflow with subsonic normal velocity
e specify 1; extrapolate 4 (3-D Euler)

BCOutflowSupersonic Outflow with supersonic normal velocity
e specify 0; extrapolate 5 (3-D Euler)
Same as BCExtrapolate

BCTunnelInflow Tunnel inlet (subsonic normal velocity)
e specify cross-flow velocity, stagnation enthalpy, entropy
e extrapolate 1 (3-D Euler)

BCTunnelOutflow Tunnel exit (subsonic normal velocity)
e specify static pressure
e extrapolate 4 (3-D Euler)

BCDegenerateLine Face degenerated to a line

Continued on next page
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Table 2: Simple Boundary Condition Types (Continued)

BCType_t or
BCTypeSimple_t Identifier

Boundary Condition Description

BCDegeneratePoint

BCSymmetryPlane

BCSymmetryPolar

BCAxisymmetricWedge

FamilySpecified

Face degenerated to a point
Symmetry plane; face should be coplanar
e density, pressure: 9()/dn =0

e tangential velocity: 9(gxn)/0On =0
e normal velocity: ¢-n =0

Polar-coordinate singularity line; special case of
BCDegenerateLine where degenerate face is a straight line
and flowfield has polar symmetry; § is singularity line
tangential unit vector

e normal velocity: ¢x§ =10

e all others: 9()/0n =0, n normal to §

Axisymmetric wedge; special case of BCDegenerateLine
where degenerate face is a straight line

A boundary condition type is being specified for the family to
which the current boundary belongs. A FamilyName_t
specification must exist under BC_t, corresponding to a
Family_t structure under CGNSBase_t. Under the Family_t
structure there must be a FamilyBC_t structure specifying a
valid BCType (other than FamilySpecified!). If any of these
are absent, the boundary condition type is undefined.

Table 3: Compound Boundary Condition Types

BCType_t or
BCTypeCompound_t Identifier

Boundary Condition Description

BCInflow

BCOutflow

Inflow, arbitrary normal Mach; test on normal Mach, then
perform one of: BCInflowSubsonic, BCInflowSupersonic

Outflow, arbitrary normal Mach; test on normal Mach,
then perform one of: BCOutflowSubsonic,
BCOutflowSupersonic

Continued on next page
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Table 3: Compound Boundary Condition Types (Continued)

BCType_t or

Boundary Condition Description
BCTypeCompound_t Identifier Y P

BCFarfield Farfield inflow /outflow, arbitrary normal Mach; test on
normal velocity and normal Mach, then perform one of:
BCInflowSubsonic, BCInflowSupersonic,
BCOutflowSubsonic, BCOutflowSupersonic

9.7 Matching Boundary Condition Data Sets

The BC_t structure allows for a arbitrary list of boundary-condition data sets, described by the
BCDataSet_t structure. For simple boundary conditions, a single data set must be chosen from
a list that may contain more than one element. Likewise, for a compound boundary condition, a
limited number of data sets must be chosen and applied appropriately. The mechanism for proper
choice of data sets is controlled by the BCType field of the BC_t structure, the BCTypeSimple field
of the BCDataSet_t structure, and the boundary-condition type association table (Table 4). In the
following discussion, we will use the ‘/’ notation for fields or elements of a structure type.

BC_t is used for both simple and compound boundary conditions; hence, the field BC_t/BCType
is of type BCType_t. Conversely, the substructure BCDataSet_t is intended to enforce a single
set of boundary-condition equations independent of local flow conditions (i.e. it is appropriate
only for simple boundary conditions). This is why the field BCDataSet_t/BCTypeSimple is of type
BCTypeSimple_t and not BCType_t. The appropriate choice of data sets is determined by matching
the field BC_t/BCType with the field BCDataSet_t/BCTypeSimple as specified in Table 4.

For simple boundary conditions, a single match from the list of BCDataSet_t instances is required.
For all BCTypeSimple_t identifiers, except BCInflowSupersonic and BCOutflowSupersonic, an
exact match is necessary. BCInflowSupersonic will match itself or BCDirichlet; BCOutflowSu-—
personic will match itself or BCExtrapolate.

For compound boundary conditions, the association table specifies which simple boundary-condition
types are appropriate. Since compound boundary conditions enforce different boundary-condition
equation sets depending on local flow conditions, several instances of BCDataSet_t will be matched
for each BCTypeCompound_t identifier. The accompanying rule determines which of the matching
data sets to apply at a given location on the BC patch.

This provides a general procedure applicable to both BCTypeSimple_t and BCTypeCompound_t situ-
ations. For a given BC_t/BCType use those instances of BCDataSet_t whose field BCDataSet_t/BC-
TypeSimple matches according to Table 4. Apply the matching data set or sets as prescribed by
the appropriate usage rule.
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Table 4: Associated Boundary Condition Types and Usage Rules

BCType_t Identifier

Associated BCTypeSimple_t Identifiers and Usage Rules

BCInflow

BCOutflow

BCFarfield

BCInflowSupersonic

BCOutflowSupersonic

A1l others

BCInflowSupersonic
BCInflowSubsonic

Usage Rule:
e if supersonic normal Mach, choose BCInflowSupersonic;
e clse, choose BCInflowSubsonic

BCOutflowSupersonic
BCOutflowSubsonic

Usage Rule:
e if supersonic normal Mach, choose BCOutflowSupersonic;
e clse, choose BCOutflowSubsonic

BCInflowSupersonic
BCInflowSubsonic
BCOutflowSupersonic
BCOutflowSubsonic

Usage Rule:
e if inflow and supersonic normal Mach, choose
BCInflowSupersonic;
e else if inflow, choose BCInflowSubsonic;
e else if outflow and supersonic normal Mach, choose
BCOutflowSupersonic;
e else, choose BCOutflowSubsonic

BCInflowSupersonic
BCDirichlet

Usage Rule:
e choose either; BCInflowSupersonic takes precedence

BCOutflowSupersonic
BCExtrapolate
Usage Rule:
e choose either; BCOutflowSupersonic takes precedence

Self-matching

Although we present a strict division between the two categories of boundary-condition types, we re-
alize that some overlap may exist. For example, some of the more general simple boundary-condition
types, such as BCWall, may include a situation of inflow/outflow (say if the wall is porous). These
complications require further guidelines on appropriate definition and use of boundary-condition
types. The real distinctions between BCTypeSimple_t and BCTypeCompound_t are as follows:
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e BCTypeSimple_t identifiers always match themselves; BCTypeCompound_t identifiers never
match themselves.

e BCTypeSimple_t identifiers always produce a single match; BCTypeCompound_t will produce
multiple matches.

e The usage rule for BCTypeSimple_t identifiers is always trivial—apply the single matching
data set regardless of local flow conditions.

Therefore, any boundary condition that involves application of different data sets depending on
local flow conditions should be classified BCTypeCompound_t. If a type that we have classified
BCTypeSimple_t is used as a compound type (BCWall for a porous wall is an example), then it
should somehow be reclassified. One option is to define a new BCTypeCompound_t identifier and
provide associated BCTypeSimple_t types and a usage rule. Another option may be to allow some
identifiers to be both BCTypeSimple_t and BCTypeCompound_t and let their appropriate use be
based on context. This is still undetermined.

9.8 Boundary Condition Specification Data

For a given simple boundary condition (i.e. one that is not dependent on local flow conditions),
the database provides a set of boundary-condition equations to be enforced through the structure
definitions for BCDataSet_t and BCData_t (Section 9.4 and Section 9.5). Apart from the boundary-
condition type, the precise equations to be enforced are described by boundary-condition solution
data. These specified solution data are arranged by ‘equation type’:

Dirichlet: Q = (Q)specified
Neumann:  0Q/0n = (0Q/0n)specified

The DirichletData and NeumannData entities of BCData_t list both the solution variables involved
in the equations (through the data-name identifier conventions of Appendix A) and the specified
solution data.

Two issues need to be addressed for specifying Dirichlet or Neumann boundary-condition data.
The first is whether the data is global or local:

Global BC data: Data applied globally to the BC patch; for example, specifying a uniform
total pressure at an inflow boundary

Local BC data:  Data applied locally at each vertex or cell face of the BC patch; an example
of this is varying total pressure specified at each grid point at an inflow
boundary

The second issue is describing the actual solution quantities that are to be specified. Both of these
issues are addressed by use of the DataArray_t structure.
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For some types of boundary conditions, many different combinations of solution quantities could
be specified. For example, BCInflowSubsonic requires 4 solution quantities to be specified in 3-D,
but what those 4 quantities are varies with applications (e.g. internal verses external flows) and
codes. We propose the convention that the actual data being specified for any BCType is given by
the list of DataArray_t entities included in DirichletData and NeumannData structures (actually
by the identifier attached to each instance of DataArray_t). This frees us from having to define
many versions of a given BCType (e.g. BCInflowSubsonicl, BCInflowSubsonic2, etc.), where each
has a precisely defined set of Dirichlet data. We are left with the easier task of defining how many
Dirichlet or Neumann quantities must be provided for each BCType.

An example of using DataArray_t-identifier conventions to describe BC specification data is the
following: subsonic inflow with uniform stagnation pressure, mass flow and cross-flow angle speci-
fied; the Dirichlet data are stagnation pressure = 2.56, mass flow = 1.34, and cross-flow angle has
a y-component of 0.043 and a z-component of 0.02 (ignore dimensional-units or normalization for
the present). The specified solution variables and associated data are described as shown:

BCData_t<ListLength=7> DirichletData =
a8

DataArray_t<real, 1, 1> PressureStagnation = {{ Data(real, 1, 1) = 2.56 1}} ;
DataArray_t<real, 1, 1> MassFlow = {{ Data(real, 1, 1) = 1.34 }} ;
DataArray_t<real, 1, 1> VelocityAngleY = {{ Data(real, 1, 1) = 0.043 }} ;
DataArray_t<real, 1, 1> VelocityAngleZ = {{ Data(real, 1, 1) = 0.02 }} ;

3

Basically, this states that DirichletData contains four instances of DataArray_t with identifiers
or names PressureStagnation, MassFlow, VelocityAngleY and VelocityAngleZ. Each DataAr-
ray_t structure entity contains a single floating-point value; these are the Dirichlet data for the
BC. Note that Data(real, 1, 1) means a single floating-point value.

The global verses local data issue can be easily handled by storing either a scalar, as shown above,
for the global BC data case; or storing an array for the local BC data case. Storing an array of
local BC data allows the capability for specifying non-constant solution profiles, such as ‘analytic’
boundary-layer profiles or profiles derived from experimental data. For the above example, if the
stagnation pressure is instead specified at every vertex of the boundary-condition patch the following
results:

BCData_t<ListLength=99> DirichletData =
a8
DataArray_t<real, 1, 99> PressureStagnation =
{{ Data(real, 1, 99) = (PTOT(n), n=1,99) }} ;

DataArray_t<real, 1, 1> MassFlow = {{ Data(real, 1, 1) = 1.34 }} ;
DataArray_t<real, 1, 1> VelocityAngleY = {{ Data(real, 1, 1) = 0.043 }} ;
DataArray_t<real, 1, 1> VelocityAngleZ = {{ Data(real, 1, 1) = 0.02 }} ;

3

where, say, the boundary face is logically rectangular and contains 11x9 vertices and the stagnation
pressure at the vertices is given by the array PTOT().
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To facilitate implementation of boundary conditions into existing flow solvers, we adopt the con-
vention that if no boundary-condition data is specified, then flow solvers are free to enforce any
appropriate boundary-condition equations. This includes situations where entities of BCDataSet_t,
BCData_t or DataArray_t are absent within the boundary-condition hierarchy. By convention,
if no BCDataSet entities are present, then application codes are free to enforce appropriate BCs
for the given value of BCType. Furthermore, if the entities DirichletData and NeumannData are
not present in an instance of BCDataSet_t, or if insufficient data is present in DirichletData or
NeumannData (e.g. if only one Dirichlet variable is present for a subsonic inflow condition), then ap-
plication codes are free to fill out the boundary-condition data as appropriate for the BCTypeSimple
identifier.

The various levels of BC implementation allowed are shown in Figure 5, from the lowest level in
which the application codes interpret the BCType, to the fully SIDS-compliant BC implementation
which completely defines the BC within the CGNS file.

BC_t
‘IndexRange_t’ ‘ BCType_t ‘ ’ BCDataSet_t ‘ ‘ BCDataSet_t
BC_t DirichletData NeumannData BCT Simple t
(BCData_t) (BCData_t) ypesimpLe_

‘IndexRange_t‘ ‘ BCType_t ‘ ‘ DataArray_t ‘ ‘ DataArray_t ‘
(a) Lowest-level allowed (applica- (b) Fully SIDS-compliant
tion code interprets meaning of
BCType)

Figure 5: Boundary Condition Implementation Levels

An alternative approach to the present design could be to list all the solution variables and data
(as DataArray_t-like structures) for the boundary condition, and contain descriptive tags in each
one to indicate if they are Dirichlet or Neumann data. We have not taken this approach. We think
grouping boundary-condition data by ‘equation type’ as we have done better allows for future
extension to other types of boundary conditions (e.g. 2nd-order non-reflecting BC’s that result in
P.D.E.’s to be solved at the boundary).

9.9 Boundary Condition Examples

This section contains boundary-condition examples with increasing complexity. Included is the
most simple BC_t entity and one of the most complex. The examples show situations of local
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and global boundary-condition data, simple and compound boundary-condition types, and multiple
boundary-condition data sets that must be matched with the appropriate boundary-condition type.

Example 9-A: Symmetry Plane

Symmetry plane for a patch on the i-min face of a 3-D structured zone.

! IndexDimension = 3
BC_t<3,3> BC1 =
{H{
BCType_t BCType = BCSymmetryPlane ;

IndexRange_t<3> PointRange =

{{

int[3] Begin = [1,1,1 ] ;
int[3] End = [1,9,17] ;
1}

3

Since the boundary-condition equations to be enforced are completely defined by the boundary-
condition type BCSymmetryPlane, no other information needs to be provided, except for the extent
of the BC patch. The BC patch is specified by PointRange with a beginning index of (1,1,1) and
an ending index of (1,9,17). By default, these refer to vertices.

Example 9-B: Viscous Solid Wall

A viscous solid wall for a 3-D structured zone, where a Dirichlet condition is enforced for temper-
ature; the wall temperature for the entire wall is specified to be 273 K. The BC patch is on the
j-min face and is bounded by the indices (1,1,1) and (33,1,9).

! IndexDimension 3
BC_t<3,3> BC2 =
{{

BCType_t BCType

BCWallViscousIsothermal ;

IndexRange_t<3> PointRange =

{{

int[3] Begin = [1 ,1,1] ;
int[3] End = [33,1,9] ;
1t

I ListLength = 33%9 = 297
BCDataSet_t<297> BCDataSetl =
{
BCTypeSimple_t BCTypeSimple = BCWallViscousIsothermal ;

! Data array length = ListLength = 297
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BCData_t<297> DirichletData =
«{

DataArray_t<real, 1, 1> Temperature =
a8
Data(real, 1, 1) = 273. ;

DataClass_t DataClass = Dimensional ;

DimensionalUnits_t DimensionalUnits =

{H
MassUnits = Null ;
LengthUnits = Null ;
TimeUnits = Null ;
TemperatureUnits = Kelvin ;
AngleUnits = Null ;
1}

s

3
1}

o

This is an example of a simple boundary-condition type, BCWallViscousIsothermal. By default
there is a zero Dirichlet condition on the velocity, and BCDataSet1 states there is a Dirichlet condi-
tion on temperature with a global value of 273 K. The data set contains a single BCData_t entity,
called DirichletData, meaning a (possibly empty) collection of Dirichlet conditions should be en-
forced. Within DirichletData, there is a single DataArray_t entity; this narrows the specification
to a single Dirichlet condition. This lone entity has the identifier Temperature, which by conventions
defined in Appendix A is the identifier for static temperature. The data contained in Temperature
is a floating-point scalar with a value of 273. The qualifiers DataClass and DimensionalUnits
specifies that the temperature is dimensional with units of Kelvin.

Since BCWallViscousIsothermal is a simple boundary-condition type, the appropriate data set
contains a BCTypeSimple entity whose value is BCWallViscousIsothermal. For this example, only
a single data set is provided, and this data set has the correct boundary-condition type. This is an
example of a trivial data-set match.

Apart from velocity and temperature, additional ‘numerical’ boundary conditions are typically
required by Navier-Stokes flow solvers, but none are given here; therefore, a code is free to implement
other additional boundary conditions as desired.

Although the boundary-condition data is global, we include in this example structure parameters
that are the lengths of potential local-data arrays. Comments are added to the example with the ‘!’
notation to document the structure parameters. The BCDataSet_t structure function ListLength
is evaluated based on PointRange. Since GridLocation is not specified in BC2, any local data is
at vertices by default. The entity Temperature contains global data, so the value of ListLength
is unused in DirichletData.
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This example raises the question of whether unused structure parameters are required in structure
entities. The answer is no. We included them here for completeness. The purpose of structure
parameters is to mimic the need to define elements of a entity based on information contained
elsewhere (at a higher level) in the CGNS database. When this need is not present in a given
instance of a structure entity, the structure parameters are superfluous. Structure parameters that
are superfluous or otherwise not needed in the following examples are denoted by ‘7’.

Example 9-C: Subsonic Inflow

Subsonic inflow for a 2-D structured zone: The BC patch is on the i-min face and includes j € [2, 7].
As prescribed by the boundary-condition type, three quantities must be specified. Uniform entropy
and stagnation enthalpy are specified with values of 0.94 and 2.85, respectively. A velocity profile
is specified at face midpoints, given by the array v_inflow(j). No dimensional or nondimensional
information is provided.

! IndexDimension = 2
BC_t<2,7?> BC3 =
{H
BCType_t BCType = BCInflowSubsonic ;

GridLocation_t GridLocation = FaceCenter ;

IndexRange_t<2> PointRange =

{{

int[2] Begin = [1,2] ;
int[2] End = [1,6] ;
1

! ListLength =5
BCDataSet_t<5> BCDataSetl =
i
BCTypeSimple_t BCTypeSimple = BCInflowSubsonic ;

! Data array length = ListLength = 5
BCData_t<5> DirichletData =

a8t
DataArray_t<real, 1, 1> EntropyApprox =
{
Data(real, 1, 1) = 0.94 ;
s
DataArray_t<real, 1, 1> EnthalpyStagnation =
{
Data(real, 1, 1) = 2.85 ;
s
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DataArray_t<real, 1, 5> VelocityY =
{{
Data(real, 1, 5) = (v_inflow(j), j=3,7) ;
1}
1
1}
1

This is another example of a simple boundary-condition type. The primary additional com-
plexity included in this example is multiple Dirichlet conditions with one containing local data.
DirichletData contains three DataArray_t entities named EntropyApprox, EnthalpyStagnation
and VelocityY. This specifies three Dirichlet boundary conditions to be enforced, and the names
identify the solution quantities to set. Since both EntropyApprox and EnthalpyStagnation have
an array-length structure parameter of one, they identify global data, and the values are provided.
VelocityY is an array of data values and contains the values in v_inflow(). The length of the
array is given by ListLength, which represents the number of cell faces because BC3 contains the
entity GridLocation whose value is FaceCenter. Note that the beginning and ending indices on
the array v_inflow() are unimportant (they are user inputs); there just needs to be five values
provided.

Example 9-D: Outflow

Outflow boundary condition with unspecified normal Mach number for an i-max face of a 3-D
structured zone: for subsonic outflow, a uniform pressure is specified; for supersonic outflow, no
boundary-condition equations are specified.

! IndexDimension = 3
BC_t<3,3> BC4 =

{H

BCType_t BCType = BCOutflow ;

IndexRange_t<3> PointRange = {{ }} ;

BCDataSet_t<7> BCDataSetSubsonic =

{
BCTypeSimple_t BCTypeSimple = BCOutflowSubsonic ;

BCData_t<7?> DirichletData =
{

DataArray_t<real, 1, 1> Pressure = {{ }} ;
L3
s

BCDataSet_t<7> BCDataSetSupersonic =

{{
BCTypeSimple_t BCTypeSimple = BCOutflowSupersonic ;
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3
3

This is an example of a complex boundary-condition type; the equation set to be enforced depends
on the local flow conditions, namely the Mach number normal to the boundary. Two data sets
are provided, BCDataSetSubsonic and BCDataSetSupersonic; recall the names are unimportant
and are user defined. The first data set has a boundary-condition type of BCOutflowSubsonic
and prescribes a global Dirichlet condition on static pressure. Any additional boundary condi-
tions needed may be applied by a flow solver. The second data set has a boundary-condition
type of BCOutflowSupersonic with no additional boundary-condition equation specification. Typ-
ically, all solution quantities are extrapolated from the interior for supersonic outflow. From
the boundary-condition type association table (Table 4), BCOutflow requires two data sets with
boundary-condition types BCOutflowSubsonic and BCOutflowSupersonic. The accompanying us-
age rule states that the data set for BCOutflowSubsonic should be used for a subsonic normal
Mach number; otherwise, the data set for BCOutflowSupersonic should be enforced.

Any additional data sets with boundary-condition types other than BCOutflowSubsonic or BCOut-
flowSupersonic could be provided (the definition of BC_t allows an arbitrary list of BCDataSet_t
entities); however, they should be ignored by any code processing the boundary-condition infor-
mation. Another caveat is that providing two data sets with the same simple boundary-condition
type would cause indeterminate results — which one is the correct data set to apply?

The actual global data value for static pressure is not provided; an abbreviated form of the Pressure
entity is shown. This example also uses the ‘?” notation for unused data-array-length structure
parameters.

Example 9-E: Farfield

Farfield boundary condition with arbitrary flow conditions for a j-max face of a 2-D structured zone:
If subsonic inflow, specify entropy, vorticity and incoming acoustic characteristics; if supersonic
inflow specify entire flow state; if subsonic outflow, specify incoming acoustic characteristic; and
if supersonic outflow, extrapolate all flow quantities. None of the extrapolated quantities for the
different boundary condition possibilities need be stated.

BC_t<2,2> BC5 =
a8
BCType_t BCType = BCFarfield ;
IndexRange_t<2> PointRange = {{ }} ;
int [2] InwardNormalIndex = [0,-1] ;
BCDataSet_t<7> BCDataSetInflowSupersonic =

H
BCTypeSimple_t BCTypeSimple = BCInflowSupersonic ;

b3
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BCDataSet_t<7> BCDataSetInflowSubsonic =

i
BCTypeSimple_t BCTypeSimple = BCInflowSubsonic ;

BCData<?> DirichletData =
it

DataArray_t<real, 1, 1> CharacteristicEntropy ={{ };
DataArray_t<real, 1, 1> CharacteristicVorticityl = {{ }} ;
DataArray_t<real, 1, 1> CharacteristicAcousticPlus = {{ }} ;
s
1}
BCDataSet_t<7?> BCDataSetOutflowSupersonic =
{
BCTypeSimple_t BCTypeSimple = BCOutflowSupersonic ;
s
BCDataSet_t<?7> BCDataSetOutflowSubsonic =
{{
BCTypeSimple_t BCTypeSimple = BCOutflowSubsonic ;
BCData<?> DirichletData =
{{
DataArray_t<real, 1, 1> CharacteristicAcousticMinus = {{ }} ;
s
1}

3

The farfield boundary-condition type is the most complex of the compound boundary-condition
types. BCFarfield requires four data sets; these data sets must contain the simple boundary-
condition types BCInflowSupersonic, BCInflowSubsonic, BCOutflowSupersonic and BCOutflow-
Subsonic. This example provides four appropriate data sets. The usage rule given for BCFarfield
in Table 4 states which set of boundary-condition equations to be enforced based on the normal
velocity and normal Mach number.

The data set for supersonic-inflow provides no information other than the boundary-condition type.
A flow solver is free to apply any conditions that are appropriate; typically all solution quantities are
set to freestream reference state values. The data set for subsonic-inflow states that three Dirichlet
conditions should be enforced; the three data identifiers provided are among the list of conventions
given in Appendix A.5. The data set for supersonic-outflow only provides the boundary-condition
type, and the data set for subsonic-outflow provides one Dirichlet condition on the incoming acoustic
characteristic, CharacteristicAcousticMinus.

Also provided in the example is the inward-pointing computational-coordinate normal; the normal
points in the —j direction, meaning the BC patch is a j-max face. This information could also be
obtained from the BC patch description given in IndexRange.
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Note that this example shows only the overall layout of the boundary-condition entity. IndexRange
and all DataArray_t entities are abbreviated, and all unused structure functions are not evaluated.
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10 Governing Flow Equations

This section provides structure type definitions for describing the governing flow-equation set asso-
ciated with the database. The description includes the general class of governing equations, the tur-
bulent closure equations, the gas and chemistry models, and the viscosity and thermal-conductivity
models. Included with each equation description are associated constants. The structure definitions
attempt to balance the opposing requirements for future growth and extensibility with initial ease
of implementation. Included in the final section (Section 10.9) are examples of flow-equation sets.

The intended use of these structures initially is primarily for archival purposes and to provide
additional documentation of the flow solution. If successful in this role, it is foreseeable that these
flow-equation structures may eventually be also used as inputs for grid generators, flow solvers, and
post-processors.

10.1 Flow Equation Set Structure Definition: FlowEquationSet_t
FlowEquationSet_t is a general description of the governing flow equations. It includes the dimen-

sionality of the governing equations, and the collection of specific equation-set descriptions covered
in subsequent sections. It can be a child node of either CGNSBase_t or Zone_t (or both).

FlowEquationSet_t< int CellDimension > :=

Eist( Descriptor_t Descriptorl ... DescriptorN ) ; (o)
int EquationDimension ; (o)
GoverningEquations_t<CellDimension> GoverningEquations ; (o)
GasModel_t GasModel ; (o)
ViscosityModel_t ViscosityModel ; (o)
ThermalConductivityModel_t ThermalConductivityModel ; (o)
TurbulenceClosure_t TurbulenceClosure ; (o)
TurbulenceModel _t<CellDimension> TurbulenceModel ; (o)
ThermalRelaxationModel_t ThermalRelaxationModel ; (o)
ChemicalKineticsModel_t ChemicalKineticsModel ; (o)
DataClass_t DataClass ; (o)
DimensionalUnits_t DimensionalUnits ; (o)
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List( UserDefinedData_t UserDefinedDatal ... UserDefinedDataN ) ; (o)
s

Notes

1. Default names for the Descriptor_t and UserDefinedData_t lists are as shown; users may
choose other legitimate names. Legitimate names must be unique within a given instance
of FlowEquationSet_t and shall not include the names EquationDimension, GoverningE-
quations, GasModel, ViscosityModel, ThermalConductivityModel, TurbulenceClosure,
TurbulenceModel, ThermalRelaxationModel, ChemicalKineticsModel, DataClass, or Di-
mensionalUnits.

2. There are no required elements for FlowEquationSet_t.

FlowEquationSet_t requires a single structure parameter, CellDimension, to identify the dimen-
sionality of index arrays for structured grids. This parameter is passed onto several substructures.

EquationDimension is the dimensionality of the governing equations; it is the number of spatial
variables describing the flow. GoverningEquations describes the general class of flow equations.
GasModel describes the equation of state, and ViscosityModel and ThermalConductivityModel
describe the auxiliary relations for molecular viscosity and the thermal conductivity coefficient.
TurbulenceClosure and TurbulenceModel describe the turbulent closure for the Reynolds-aver-
aged Navier-Stokes equations. ThermalRelaxationModel and ChemicalKineticsModel describe
the equations used to model thermal relaxation and chemical kinetics.

DataClass defines the default for the class of data contained in the flow-equation set. For any data
that is dimensional, DimensionalUnits may be used to describe the system of dimensional units
employed. If present, these two entities take precedence of all corresponding entities at higher levels
of the hierarchy. These precedence rules are further discussed in Section 6.3.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

10.2 Governing Equations Structure Definition: GoverningEquations_t
GoverningEquations_t describes the class of governing flow equations associated with the solution.

GoverningEquationsType_t := Enumeration(
Null,
FullPotential,
Euler,
NSLaminar,
NSTurbulent,
NSLaminarIncompressible,
NSTurbulentIncompressible,
UserDefined ) ;
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GoverningEquations_t< int CellDimension > :=

IEist( Descriptor_t Descriptorl ... DescriptorN ) ; (o)
GoverningEquationsType_t GoverningEquationsType ; (r)
int [CellDimension* (CellDimension + 1)/2] DiffusionModel ; (o)
List( UserDefinedData_t UserDefinedDatal ... UserDefinedDataN ) ; (o)
Y

Notes

1. Default names for the Descriptor_t and UserDefinedData_t lists are as shown; users may
choose other legitimate names. Legitimate names must be unique within a given instance of
GoverningEquations_t and shall not include the name DiffusionModel.

2. GoverningEquationsType is the only required element.

3. The length of the DiffusionModel array is as follows: in 1-D it is int[1]; in 2-D it is
int[3]; and in 3-D it is int [6]. For unstructured zones, DiffusionModel is not supported,
and should not be used.

GoverningEquations_t requires a single structure parameter, CellDimension. It is used to define
the length of the array DiffusionModel.

DiffusionModel describes the viscous diffusion terms modeled in the flow equations, and is applica-
ble only to the Navier-Stokes equations with structured grids. Typically, thin-layer approximations
include only the diffusion terms in one or two computational-coordinate directions. Diffusion-
Model encodes the coordinate directions that include second-derivative and cross-derivative diffusion
terms. The first CellDimension elements are second-derivative terms and the remainder elements
are cross-derivative terms. Allowed values for individual elements in the array DiffusionModel
are 0 and 1; a value of 1 indicates the diffusion term is modeled, and 0 indicates that they are not
modeled. In 3-D, the encoding of DiffusionModel is as follows:

Element Modeled Terms

n=1 Diffusion terms in i (9%/9¢?)
n=2 Diffusion terms in j (6%/9n?)
n=3 Diffusion terms in k (6%/9¢?)
n=4 Cross-diffusion terms in i-j (0%/0¢0n and 9% /0no€)
n=>5 Cross-diffusion terms in j-k (0?/0n0¢ and 9%/9(dn)
n==6 Cross-diffusion terms in k-i (0?/0¢O¢ and 92 /9€0C)

where derivatives in the ¢, j and k& computational-coordinates are £, n and (, respectively. The
full Navier-Stokes equations in 3-D are indicated by DiffusionModel = [1,1,1,1,1,1], and the
thin-layer equations including only diffusion in the j-direction are [0,1,0,0,0,0].
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The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

10.3 Thermodynamic Gas Model Structure Definition: GasModel_t

GasModel_t describes the equation of state model used in the governing equations to relate pressure,
temperature and density.

GasModelType_t := Enumeration(
Null,
Ideal,
VanderWaals,
CaloricallyPerfect,
ThermallyPerfect,
ConstantDensity,
RedlichKwong,
UserDefined ) ;

GasModel_t :=

{
List( Descriptor_t Descriptorl ... DescriptorN ) ; (o)
GasModelType_t GasModelType ; ()
List( DataArray_t<DataType, 1, 1> DataArrayl ... DataArrayN ) ; (o)
DataClass_t DataClass ; (o)
DimensionalUnits_t DimensionalUnits ; (o)
List( UserDefinedData_t UserDefinedDatal ... UserDefinedDataN ) ; (o)
s

Notes

1. Default names for the Descriptor_t, DataArray_t, and UserDefinedData_t lists are as
shown; users may choose other legitimate names. Legitimate names must be unique within a
given instance of GasModel_t and shall not include the names DataClass or DimensionalU-
nits.

2. GasModelType is the only required element.

3. The GasModelType enumeration name Ideal implies a calorically perfect single-component
gas, but the more descriptive name CaloricallyPerfect is generally preferred.
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For a perfect gas (GasModelType = CaloricallyPerfect), the pressure, temperature and density
are related by,
p = pRT,

where R is the ideal gas constant. Related quantities are the specific heat at constant pressure (c),
specific heat at constant volume (c¢,) and specific heat ratio (y = ¢,/c,). The gas constant and
specific heats are related by R = ¢, — ¢,. Data-name identifiers associated with the perfect gas law
are listed in Table 5.

Table 5: Data-Name Identifiers for Perfect Gas

Data-Name Identifier Description Units
IdealGasConstant Ideal gas constant (R) L%/(T?0)
SpecificHeatRatio Ratio of specific heats (v = ¢,/cy) -
SpecificHeatVolume Specific heat at constant volume (c,) L?/(T?0)
SpecificHeatPressure Specific heat at constant pressure (cp) L?/(T?0)

If it is desired to specify any of these identifiers in a CGNS database, they sho